для стартапов
и инвесторов
Изобретение относится к бисфенольным производным флуорена указанной ниже общей формулы 1, обладающим антимикоплазменной активностью, в которой L=OC(O), R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом (за исключением случаев, когда R1=R2=R3=R4=H и R1=R2=R3=R4=C(O)OH). Изобретение относится также к способу получения указанных соединений и применению соединений общей формулы 1, в которой L=OC(O), R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом, в качестве веществ, способных подавлять рост патогенных микоплазм путем воздействия на новые, ранее не использовавшиеся в клинической практике, архитектурные гистоноподобные HU-белки. 3 н. и 4 з.п. ф-лы, 4 ил., 2 табл., 5 пр.
Область техники Изобретение относится к области фармакологии, медицины и ветеринарии и касается соединений общей формулы 1, содержащих несколько функциональных групп, связанных с ароматическими кольцами, и флуореновый фрагмент, которые обнаруживают бактерицидную активность по отношению к микоплазмам: где L=OC(O); R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом; исключая случаи, когда R1=R2=R3=R4=H и R1=R2=R3=R4=C(O)OH. Уровень техники Микоплазма (класс Mollicutes) представляет собой особый вид бактерий, у которых отсутствует жесткая клеточная стенка (Коротяев А.И., Бабичев С.А. Медицинская микробиология, иммунология и вирусология. СпецЛит. СПб., 2002, 470-591). Это самые маленькие из известных микроорганизмов (размер 300 нм), которые не видны в световом микроскопе. Микоплазмы относятся к грамположительным бактериям, но имеют редуцированный геном и ограниченные биосинтетические возможности, которые компенсируются паразитическим образом жизни, характеризующимся получением питательных веществ от организма хозяина (Chernova О.А., Medvedeva E.S., Mouzykantov А.А., Baranova N.B., Chernov V.M. Mycoplasmas and their antibioticresistance: the problems and prospectsin controlling infections. Acta Naturae, 2016, 8 (2), 24-34). Микоплазмы паразитируют в млекопитающих, рептилиях, рыбах, насекомых, артроподах, растениях, вызывая инфекционные заболевания у своих хозяев. Для человека патогенны Mycoplasma genitalium, которая вызывает воспалительные процессы в мочеполовой системе мужчин и женщин, приводящие к бесплодию даже при бессимптомном носительстве (ВОЗ, 1994), а также Mycoplasma hominis, которая паразитирует на клетках слизистой оболочки, выстилающей желудочно-кишечный тракт, и Mycoplasma pneumoniae, которая поражает дыхательный эпителий. Паразитический образ жизни в клетках высших эукариот выработал у микоплазмы способность преодолевать защитные системы организма-хозяина, поэтому контроль микоплазменных инфекций представляет серьезную проблему (Борхсениус С.Н., Чернова О.А., Чернов В.М. Микоплазмы. Молекулярная и клеточная биология, взаимодействие с иммунной системой млекопитающих, патогенность, диагностика. Наука СПб., 2002). Находящиеся внутри клетки организма-хозяина микоплазмы защищены от действия многих лекарственных препаратов и поэтому устойчивы к действию большинства известных антибиотиков. Пенициллины, цефалоспорины, аминогликозиды не действуют на микоплазмы из-за отсутствия клеточной стенки, тетрациклины, макролиды (тилозин, тиамулин) и азалиды являются бактериостатиками и только препятствуют их размножению, рифампицины и сульфаниламиды недостаточно специфичны, фторхинолоны не проникают в уреаплазму из-за липофильности ее оболочки (Chernova О.A., etall, Mycoplasmas and Their Antibiotic Resistance: The Problems and Prospectsin Controlling Infections., ACTANATURAE, 2016, 8 (2), 24-34). Низкая антимикоплазменная активность известных антибиотиков требует увеличения их дозировки и/или совместного применения в виде нескольких курсов в комплексе с сосудистыми, ферментными и антигистаминными препаратами, а также физиотерапевтическими процедурами. Но даже в этом случае трудно добиться полного уничтожения паразитов (Ильин И.И. и др. Размышления о лечении урогенитального хламидиоза. Вестник дерматол. и венер., 1994, 1, 30-33). Так, в случае инфекционных заболеваний, вызванных Mycoplasma genitalium, при использовании стандартных методов терапии полное излечение наблюдается лишь в 23-30% случаев, а в 15% - лечение не дает никакого результата (Козлова В.И. и Пухнер А.Ф. Вирусные, хламидийные и микоплазменные заболевания гениталий. М.: Авицена, 1995, с. 229-236 и 287-289, патент RU 2137483). Кроме того, повышенные дозы антибиотиков негативно воздействуют на нормальную микрофлору желудочно-кишечного тракта, что увеличивает риск развития дисбактериозов и сопутствующих им грибковых заболеваний и иммунных расстройств. Проблема микоплазменных инфекций также актуальна в ветеринарии. У ряда домашних животных, например, у собак часто диагностируются урогенитальные заболевания, вызванные различными микоплазмами, причем передаваться возбудитель может как контактным, так и воздушно-капельным путем. А поскольку домашние животные находятся в тесном контакте с человеком, то существует опасность заражения людей в случае адаптации паразита к новому хозяину. Микоплазменные инфекции также представляют серьезную проблему для агропромышленного комплекса. Например, В связи со всем вышеперечисленным разрабатываются превентивные способы борьбы с микоплазмозом птицы, например, путем использования профилактической вакцинации с помощью живой или инактивированной вакцины, к которым относятся вакцина инактивированная эмульсионная «АВИВАК-РМ» или живая рекомбинантная вакцина против оспы птиц и микоплазмоза птиц «Вектормун FP-MG». Доступные вакцины имеют высокую стоимость и низкий уровень поствакцинального иммунитета. Таким образом, получение новых синтетических препаратов, способных подавлять рост микоплазмы, весьма актуально для медицины и ветеринарии. Анализ доступных литературных источников показал, что ранее были известны соединения, содержащие флуореновые фрагменты с п-гидроксифенильными заместителями в положении 9, которые обладали бактерицидной активностью по отношению к Вышеперечисленные 9-замещенные производные флуорена только отчасти могут служить прототипами для настоящего изобретения, так как помимо значительных отличий в химической структуре они принципиально отличаются от патентуемых соединений как по механизму действия и клеточной мишени, так и по спектру антибактериальной активности. Раскрытие изобретения Техническим результатом данного изобретения является моделирование структуры молекулы и разработка методов синтеза новых смоделированных соединений, способных подавлять рост патогенных микоплазм путем воздействия на новые, ранее не использовавшиеся в клинической практике архитектурные гистоноподобные HU-белки, используемые в качестве белковой мишени. Для достижения технического результата предложены бисфенольные производные флуорена общей формулы 1, обладающие антимикоплазменной активностью где L=OC(O); R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом; исключая случаи, когда R1=R2=R3=R4=H и R1=R2=R3=R4=C(O)OH. Кроме того, L=OC(O); R1=R3=C(O)NHR5 и R2=R4=C(O)OH, или R1=R4=C(O)NHR5 и R2=R3=C(O)OH, или R2=R4=C(O)NHR5 и R1=R3=C(O)OH; R5=м-MePh. Кроме того, L=OC(O), R1=R3=H, R2=R4=C(O)OH. Для достижения технического результата предложен способ получения соединений общей формулы 1, заключающийся в окислении 9Н-флуорена, конденсации 9Н-флуорен-9-она с фенолом, О-ацилировании бисфенольного производного 9Н-флуорен-9-она, гидролизе или раскрытии циклического ангидрида ароматическим амином. Кроме того, для получения соединения общей формулы 1, где L=OC(O); R1=R3=C(O)NHR5 и R2=R4=C(O)OH, или R1=R4=C(O)NHR5 и R2=R3=C(O)OH, или R2=R4=C(O)NHR5 и R1=R3=C(O)OH; R5=м-MePh, на последней стадии раскрытие циклического ангидрида осуществляют взаимодействием с м-толуидином. Кроме того, для получения соединения общей формулы 1, где L=OC(O), R1=R3=H, R2=R4=C(O)OH, О-ацилирование бисфенольного производного 9Н-флуорен-9-она проводят взаимодействием с дихлорангидридом изофталевой кислоты и последующим гидролизом хлорангидрида нагреванием его водного раствора. Применение бисфенольных производных флуорена общей формулы 1, где L=OC(O); R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом, в качестве веществ, способных подавлять рост патогенных микоплазм путем воздействия на новые, ранее не использовавшиеся в клинической практике архитектурные гистоноподобные HU-белки. В качестве белковой мишени были выбраны архитектурные гистоноподобные HU-белки присутствующие во всех бактериях, но отсутствующие у высших эукариот (Berger, М., A.Farcas, et al. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU.EMBORep, 2010, 11(1), 59-64). Для получения низкомолекулярных ингибиторов ДНК-связывающей активности HU белков, обладающих антимикоплазменной активностью, была использована пространственная структура HU белка микоплазмы Spiroplasma Melliferum, имеющая наилучшее разрешение по сравнению с доступными структурами аналогов (Воуkо K.М., Rakitina T.V., Korzhenevskiy D.A., Vlaskina A.V., Agapova Y.K., Kamashev D.E., Kleymenov S.Y. & Popov V.O. Structural basis of the high thermal stability of the histone-like HU protein from the mollicute Spiroplasma melliferum KC3. Sci Rep, 2016, 6, 36366.doi:10.1038/srep36366). Для подготовки структуры к проведению молекулярного докинга использовали программы Modeller (Sali A. and Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J MolBiol, 1993, 234(3), 779-815) и Mutate (Строганов О.В., Чилов Г.Г., Новиков Ф.Н. et al. Программа Mutate, 2011. Свидетельство о государственной регистрации программы для ЭВМ 2011615051). Молекулярный докинг проводили с помощью программы Lead Finder (Stroganov O.V., Novikov F.N., Stroylov V.S., et al. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chemlnf Model, 2008, 48(12), 2371-85), используя виртуальную библиотеку соединений компании Vitas М laboratories (http://www.vitasmlab.com/). Структурную фильтрацию результатов проводили с помощью программы dock_filter (Novikov F.N., Stroylov V.S., Stroganov O.V., et al. Improving performance of docking-based virtual screening by structural filtration. JMolModel, 2010, 16(7), 1223-30), а визуализацию результатов моделирования - в программе VMD (HumphreyW., DalkeA., and K. Schulten. VMD: visualmoleculardynamics. JMolGraph, 1996, 14(1), 33-8). Таким образом, технический результат достигался за счет того, что химическая структура патентуемых соединений, представляющих собой бисфенольные производные флуорена, обеспечивала их способность прочно связываться с HU белком, препятствуя тем самым образованию комплекса HU белок - ДНК, что вызывало нарушение протекания ДНК-зависимых процессов, включая транскрипцию и, как следствие, приводило к угнетению синтеза белков и к гибели микоплазмы. Действие полученных соединений специфически направлено на белковый аппарат, обеспечивающий архитектуру бактериального генома, который в случае представителей класса Mollicute представлен исключительно гистоноподобными HU белками. Это обеспечивает избирательную активность бисфенольных производных флуорена в первую очередь в отношении паразитических микоплазм, тогда как их воздействие на более сложно-организованные бактерии, включая нормальную микробиоту желудочно-кишечного тракта, в значительной степени ослаблено, что существенно снижает риск развития дисбактериозов и сопутствующих им грибковых заболеваний и иммунных нарушений. Краткое описание чертежей На фиг. 1 показана общая формула 1 бисфенольных производных флуорена, включая их соли с фармакологически приемлемыми основаниями и/или гидраты, где L=OC(O); R1-R4 могут быть одинаковыми или различными и каждый независимо представляет Н, СООН, C(O)NHR5, R5 - фенил, замещенный метилом. На фиг. 2 показано соединение общей формулы 1, где L=OC(O); R1=R3=C(O)NHR5 и R2=R4=C(O)OH или R1=R4=C(O)NHR5 и R2=R3=C(O)OH или R2=R4=C(O)NHR5 и R1=R3=C(O)OH; R5=м-MePh. Название соединения - 4,5'-(4,4'-(9H-флуорен-9,9-диил)бис(4,1-фенилен))бис(окси)-бис(оксометилен)бис(2-(м-толилкарбамоил)-бензойная кислота) - смесь региоизомеров. На фиг. 3 показано соединение общей формулы 1, где L=OC(O), R1=R2=R3=R4=C(O)OH. Название соединения - 4,4'-(4,4'-(9H-флуорен-9,9-диил)бис(4,1-фенилен))бис(окси)-бис(оксиметилен)дифталевая кислота. На фиг. 4 показано соединение общей формулы 1, где L=OC(O), R1=R3=H, R2=R4=C(O)OH. Название соединения - 3,3'-(4,4'-(9H-флуорен-9,9-диил)бис(4,1-фенилен))бис(окси)-бис(оксиметилен)дибензойная кислота. Осуществление изобретения Синтез новых бисфенольных производных 9-флуорена общей формулы 1, показанных на фиг. 2-4, осуществлялся по схеме 1. Исходные реагенты, используемые для синтеза, являются коммерчески доступными, промежуточные соединения были получены известными в литературе способами. Структуры предпочтительных соединений, представленные на фиг 2-4, синтезированных в соответствии со схемой 1, подтверждались данными химического и спектрального анализа, а также другими физико-химическими характеристиками: 1. Синтез 4,5'-(4,4'-(9 2. Синтез 4,4'-(4,4'-(9 3. Синтез 4,4'-(4,4'-(9 Ниже постадийно описаны методики синтеза соединений, показанных на фиг. 2-4. Пример 1. 9 4,4'-(9 4,4'-(9 Элементный анализ С43Н22O10. Вычислено С 73.92, Н 3.17; Найдено С 73.68, Н 3.36. ИК-спектр (KBr): 3 065 см-1 (С аром-Н), 1863 и 1782 см-1 (С=О), 1742 см-1 (С=O), 1502 см-1. Спектр1Н ЯМР (CDCl3), δ: 8.78 (с, 2Н), 8.68 (д, 2Н), 8.15 (д, 2Н), 7.80 (д, 2Н), 7.41 (м, 4Н), 7.33 (м, 6Н), 7.14 (д, 4Н). 1,3-диоксо-1,3-дигидро-изобензофуран-5-карбонил хлорид (4). Растворяют 5.0 г (0.026 моль) тримеллитового ангидрида в 3.1 мл (5.0 г, 0.0425 моль) тионилхлорида, добавляют несколько капель ДМФА, нагревают до кипения и кипятят при интенсивном перемешивании в течение 2.5 ч, затем охлаждают и отгоняют оставшийся тионилхлорид при пониженном давлении, остаток обрабатывают гексаном, получают 3.8 г (70%) соединения 4 в виде бежевого порошка с т. пл. 65-66°С. Лит. т. пл. 69°C (UlrichH., RichterR. 4-Isocyanatophthalic anhydride. Noveldifunctionalmonomer. J. Org. Chem., 1973, 38 (14), 2557-2558. DOI: 10.1021/jo00954a034). 4,4'-(4,4'-(9 Пример 2. 4,5'-(4,4'-(9 К раствору 200 мг (0.29 ммоль) соединения 3 в 1 мл ДМСО прибавляют 31 мг (0.30 ммоль) Пример 3. 3,3'-(4,4'-(9 В предварительно продутую аргоном колбу, охлаждаемую ледяной баней, содержащую раствор 3.0 г (0.018 моль) дихлорангидрида изофталевой кислоты 7 в 25 мл абсолютного ТГФ, при интенсивном перемешивании по каплям прибавляют раствор 3.2 г (0.009 моль) соединения 2 и 2.2 мл (2.1 г, 0.026 моль) пиридина в 30 мл абсолютного ТГФ, поддерживая температуру 5-10°С. По окончании прибавления реакционную массу выдерживают еще 2 ч при комнатной температуре. Реакционную массу концентрируют в вакууме, к остатку добавляют 50 мл воды и выдерживают при 85-90°С 1 ч, получившуюся суспензию отфильтровывают, осадок промывают водой и затем кипятят с 50 мл метанола. Охлаждают, отфильтровывают осадок и промывают метанолом. Получают 2.9 г (50%) соединения (8) в виде порошка белого цвета. Спектр1НЯМР (ДМСО- Дихлорангидрид изофталевой кислоты (7). Смесь 5.0 г (0.030 моль) изофталевой кислоты в 3.1 мл (5.0 г, 0.043 моль) тионилхлорида с несколькими каплями ДМФА кипятят при интенсивном перемешивании в течение 2.5 ч. Реакционную массу охлаждают и отгоняют избыток тионилхлорида при пониженном давлении, остаток используют в дальнейших превращениях, считая его как 95%-ный дихлорангидрид изофталевой кислоты. Пример 4. Определение способности соединений ингибировать ДНК-связывающую активность микоплазменных HU белков. Влияние соединений, показанных на фиг. 2-4, на формирование комплексов HU белков В качестве контроля служил образец олигонуклеотида без добавления белка. Присутствие ингибитора препятствует образованию комплекса, а используя флуресцентно-меченый олигонуклеотидный дуплекс можно определить зависимость уменьшения количества ДНК, находящейся в комплексе, от концентрации ингибитора. При проведении EMSA использовали рекомбинантные белки HUSpm и HUMgal, полученные, как описано в работах (K. Boyko et al. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of histone-like HU-protein from Spiroplasma melliferum KC3, ActaCryst. F (Structural Biology Communications) 2015, 71(1), 24-27 и Николаева А.Ю. и др. Выделение, очистка, кристаллизация и предварительное рентгеновское исследование кристаллов HU-белка из M.GALLISEPTICUM. Кристаллография, 2015, 60(6), 922-925) и олигонуклеотидные дуплексы, полученные на основе 5'- Су3-меченого олигонуклеотида длиной 24 п.о. CrD24: 5'-Су3-AGTGCAGTTGAGTCCTTGCTACGACGG-3'. Для получения дуплекса CrD отжигали путем инкубации при 90°С в течение 5 мин с последующим охлаждением в течение 1 часа с полностью комплементарным олигонуклеотидом CrJ24 (правильный дуплекс) или с укороченным олигонуклеотидом длиной 14 п.о. CrJ14: 5'-GACTCAACTGCАСТ-3' (дуплекс с выступающим 3'-концом длиной 10 п.о., overhang). Различные дуплексы использовали потому, что HU белки образуют более прочные комплексы с двухцепочечной ДНК, содержащей одноцепочечные разрывы, вставки или липкие концы, которые делают ДНК более гибкой. Отжиг дуплекса и реакцию образования комплекса проводили в буфере, содержащем 25 мМ Трис-HCl рН 8,0, 10% глицерин и 150 мМ NaCl. Для получения комплекса 0,4 пмоль дуплекса смешивали с 1 пмоль белка в присутствии различных концентраций соединений фиг. 2-4 или 10% (об./об.) диметилсульфоксида (ДМСО) в качестве контроля, т.к. все разведения соединений фиг. 2-4 готовили в ДМСО. Реакцию проводили в объеме 10 мкл при комнатной температуре в течение 5 мин. Затем образцы наносили на 12% полиакриламидный гель, в качестве буфера использовали 100 мМ Трис-боратр Н 8,3. Электрофорез проводили при 300 В и 10°С в течение 2 часов. Гели сканировали при помощи лазерного флюоресцентного анализатора Pharos FX MolecularImager (Bio-RadLaboratories), оцифровку изображений проводили в программе QuantityOne - 4.6.9 (Basic) (Bio-RadLaboratories). Построение кривых ингибирования и определение коэффициента 50% ингибирования (IC50) - концентрации ингибиторов, ингибирующих образование комплекса на 50%, производили при помощи программы Graph Pad Prism (Graph Pad Software, Inc.). Эксперименты повторяли по 2 раза с каждой парой олигонуклеотидных дуплексов. Так как использование разных дуплексов не влияло на ингибирующую активность соединений, результаты были объединены. Пример 5. Определение способности соединений подавлять рост микоплазмы в культуре. Определение минимальной ингибирующей концентрации (МИК) соединений, показанных на фиг. 2-4, препятствующей росту микоплазмы в культуре, проводили методом микроразведений в жидкой среде (Tanner А.С., Wu С.С., Adaptation of the Sensititrebrothmicrodilution techniquetoantimicrobialsusceptibilitytestingofMycoplasmagallisepticum, Avian Dis. 36 (1992) 714-717). Штаммы Эксперименты проводили 2-3 раза, по три технических повтора в каждом.