патент
№ RU 2667362
МПК C07D333/10

Донорно-акцепторные олигомеры с фенилдициановинильными заместителями на основе трифениламина и способ их получения

Авторы:
Пономаренко Сергей Анатольевич
Номер заявки
2015133973
Дата подачи заявки
13.08.2015
Опубликовано
19.09.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
4
Реферат

[59]

Изобретение относится к новым донорно-акцепторным олигомерам общей формулы (I)

[60]

[61]

где n означает целое число от 1 до 5; m означает целое число от 1 до 3, а также способу их получения, который заключается в том, что осуществляют реакцию конденсации Кневенагеля между малононитрилом и кетоном, выбранным из ряда соединений общей формулы (II)

[62]

[63]

где n, m имеют вышеуказанные значения, новые соединения отличаются отсутствием алкильных групп, растворимостью в органических растворителях, высокой термической стабильностью и эффективным поглощением света в области от 400 до 800 нм. 2 н. и 8 з.п. ф-лы, 6 ил., 1 табл., 2 пр.

Формула изобретения

1. Донорно-акцепторные олигомеры общей формулы (I)

где n означает целое число от 1 до 5;

m означает целое число от 1 до 3;

2. Донорно-акцепторные олигомеры по п. 1, отличающиеся тем, что n имеет значения от 2 до 3.

3. Донорно-акцепторные олигомеры по п. 1, отличающиеся тем, что m имеет значения 1 или 3.

4. Донорно-акцепторные олигомеры по п. 1, отличающиеся тем, что они характеризуются термической стабильностью не ниже 400°С.

5. Донорно-акцепторные олигомеры по п. 1, отличающиеся тем, что спектры поглощения их тонких пленок толщиной 50-300 нм имеют край поглощения не менее 600 нм.

6. Донорно-акцепторные олигомеры по п. 1, отличающиеся тем, что характеризуются растворимостью не менее 3 мг/мл в о-дихлорбензоле при комнатной температуре.

7. Способ получения донорно-акцепторных олигомеров по пп. 1-6, заключающийся в том, что осуществляют реакцию конденсации Кневенагеля между кетоном, выбранным из ряда соединений общей формулы (II) и малононитрилом

где n, m имеют вышеуказанные значения.

8. Способ по п. 7, отличающийся тем, что реакцию конденсации Кневенагеля между кетоном и малононитрилом проводят в среде пиридина или его смеси с по крайней мере одним растворителем, выбранным из ряда толуол, тетрагидрофуран, хлороформ, дихлорэтан, хлорбензол, при этом пиридин является одновременно и катализатором.

9. Способ по п. 7, отличающийся тем, что реакцию конденсации Кневенагеля между кетоном и малононитрилом проводят при температуре от +20 до +150°С, предпочтительно при температуре от +80 до +115°С.

10. Способ по п. 7, отличающийся тем, что реакцию конденсации Кневенагеля между малононитрилом и кетоном проводят при нагревании микроволновым излучением.

Описание

[1]

Изобретение относится к области химической технологии органических соединений и может найти промышленное применение при получении новых функциональных органических материалов, обладающих эффективным поглощением в видимой части спектра, например, светопоглощающих материалов, новых органических красителей, фотоактивных материалов и т.д. Более конкретно, изобретение относится к донорно-акцепторным олигомерам с фенилдициановинильными заместителями на основе трифениламина и способу их получения.

[2]

К донорно-акцепторным олигомерам в рамках данного изобретения относятся такие органические соединения, которые, имеют, один электронодонорный трифениламиновый фрагмент, связанный через π-сопряженный тиофеновый спейсер (π-спейсер) с одним, двумя или тремя электроноакцепторным фенилдициановинильным фрагментами.

[3]

Известны разнообразные донорно-акцепторные олигомеры на основе трифениламина, содержащие самые различные по природе электроноакцепторные заместители и π-сопряженные ариленовые или гетероариленовые спейсеры (Высокомол. Соедин. Сер. С, 2014, т.56, №. 1, с. 111-143).

[4]

Наиболее близким по строению к заявляемым донорно-акцепторным олигомерам, можно отнести схожие соединения, имеющие также трифениламин в качестве электронодонорного фрагмента, тиофен или его производные в качестве π-спейсера, но дициановинильные (J. Am.Chem. Soc, 2006, 128, 3459-3466; Chem. Commun. 48, 8907 (2012), (Solar Energy Materials & Solar Cells 2013, 115, 52) или алкилдициановинильные (Патент 2012, WO 2012/100908 A1; Adv. Energy Mater. 2014, 4, 201301234) заместители в качестве электроноакцепторного фрагмента (см. Фиг. 1).

[5]

Как правило, синтез таких соединений основан на проведении конденсации Кневенагеля между малононитрилом и полученным заранее прекурсором, альдегидом в случае дициановинильных групп (J. Am.Chem. Soc, 2006, 128, 3459-3466), или кетоном, в случае алкилдициановинильных групп (Org. Electron., 2013, 14, 219-229; Adv. Energy Mater. 2014, 4, 201301234):

[6]

[7]

Однако подобные донорно-акцепторные олигомеры с фенилдициановинильными группами, а также метод их получения не описаны.

[8]

Несмотря на то, что вышеприведенные примеры донорно-акцепторных олигомеров с дициановинильными и алкилдициановинильными заместителями демонстрируют эффективное поглощение в длинноволновой области видимого спектра и в ряде работ были использованы в качестве компонента фотоактивного слоя органических солнечных батарей, они не лишены ряда недостатков, обусловленных особенностями их химического строения. Например, в дициановинильных группах присутствует реакционно-способный (активный) протон, т.к. для их синтеза используется альдегидный прекурсор. Наличие такого активного протона, может снижать долговременную стабильность донорно-акцепторных соединений при их использовании в оптоэлектронных устройствах, где они подвержены длительным фото-, электро- и термическим воздействиям. Например, недавно в работе (Faraday Discussions 2014,174, 313-339) было продемонстрированно, что звездообразные олигомеры на основе трифениламина обладают необратимым электрохимическим восстановлением. Также в этой и других работах было показано, что наличие алкильной группы вместо атома водорода, способно повышать электрохимическую стабильность таких донорно-акцепторных соединений. Однако, при проведении термогравиметрического анализа было найдено, что алкильные группы начинают первыми разлагаться при термическом воздействии как на воздухе, так и в инертной среде, что ведет к последующему разрушению алкилдициановинильной группы (Faraday Discussions 2014,174, 313-339, J. Mater. Chem. A, 2014, 2, 16135).

[9]

В данной заявке предлагается использовать новые донорно-акцепторные олигомеры, имеющие фенильный радикал при дициановинильной группе вместо атома водорода или алкильной группы. Благодаря тому, что подобные соединения не имеют никаких алкильных групп и активных групп вообще, они обладают повышенной термической стабильностью по сравнению с известными аналогами (см. Фиг. 2). Для реализации этой идеи при проведении конденсации Кневенагеля с малононитрилом используются кетоновые прекурсоры с концевыми фенильными группами.

[10]

Таким образом, задачей заявляемого изобретения, является получение нового технического результата, заключающегося в синтезе новых донорно-акцепторных олигомеров обладающих повышенной термо- и термоокислительной стабильностью, которые могут найти применение в различных устройствах органической электроники и фотоники. Например, в качестве фотоактивных, светопоглощающих или светопреобразующих материалов в органических и гибридных солнечных батареях, фотодетекторах и др. В качестве таких свойств в рамках данного изобретения выступают эффективное поглощение света в широком спектральном диапазоне, растворимость в органических растворителях и повышенная термическая стабильность как в инертной атмосфере, так и на воздухе.

[11]

Кроме того, задачей данного изобретения является разработка нового способа получения заявленных донорно-акцепторных олигомеров, позволяющего синтезировать продукты заданного строения высокой чистоты, и пригодного к применению в промышленных условиях.

[12]

Задача решается тем, что получены донорно-акцепторные олигомеры общей формулы (I)

[13]

[14]

где n означает целое число от 1 до 5;

[15]

m означает целое число от 1 до 3;

[16]

Преимущественные значения n от 2 до 3. В случае, когда донорно-акцепторные олигомеры имеют значение n равным 2 или 3, то их общая формула может быть представлена следующим образом:

[17]

[18]

Преимущественные значением m является 1 или 3. В случае, когда донорно-акцепторные олигомеры имеют значение m равным 1 или 3, их общая формула может быть представлена следующим образом:

[19]

[20]

Представленные значения n, m являются частными случаями и не исчерпывают все возможные значения и все возможные сочетания значений n, m между собой.

[21]

Донорно-акцепторные олигомеры отличаются тем, что они характеризуются термической стабильностью не ниже 400°С. В рамках данного изобретения термическая стабильность определяется как температура потери 5% массы при нагревании вещества в инертной атмосфере. Данная температура для различных частных случаев составляет не менее 400°С, предпочтительно не менее 425°С. Такая высокая стабильность, обусловлена тем, что в химической структуре таких соединений отсутствуют термически нестабильные фрагменты. Данные термогравиметрического анализа (ТГА), иллюстрирующие высокую термическую стабильность заявленных донорно-акцепторных олигомеров, в том числе и в сравнение с аналогом, имеющим алкилдициановинильные фрагменты, приведены на Фиг. 2, а также в Таблице 1.

[22]

Отличительной особенностью заявленных донорно-акцепторных олигомеров является то, что спектры поглощения их тонких пленок толщиной 50-300 нм имеют край поглощения не менее 600 нм. Данная особенность обусловлена тем, что донорно-акцепторные олигомеры содержат фрагменты, обладающие эффективным поглощением в диапазоне от 400 до 800 нм. В рамках данного изобретения способность к поглощению света в этом диапазоне определяется тем, что спектры поглощения их тонких пленок толщиной 50-300 нм имеют край поглощения не менее 600 нм. Данные, иллюстрирующие способность заявленных донорно-акцепторных олигомеров в пленках поглощать свет с краем поглощения не менее 600 нм приведены на Фиг. 3, а также в Таблице 1.

[23]

Отличительной особенностью заявленных донорно-акцепторных олигомеров является то, что они характеризуются растворимостью не менее 3 мг/мл в о-дихлорбензоле, при комнатной температуре. Растворимость является важным параметром для возможности использования донорно-акцепторных олигомеров в различных устройствах органической электроники. Поскольку в этом случае фотоактивный слой из этих соединений может быть получен из раствора, а не дорогостоящим вакуумным напылением. Предпочтительной растворимостью считается растворимость порядка 10 мг/мл о-дихлорбензоле. Заявленные донорно-акцепторные олигомеры могут быть растворимы и в других органических растворителях, например, в тетрагидрофуране, хлороформе, хлорбензоле, о-дихлорбензоле и т.д., а также в различных вариациях смесей этих растворителей. Данные, иллюстрирующие способность заявленных донорно-акцепторных олигомеров растворяться в о-дихлорбензоле приведены в Таблице 1.

[24]

Приведенные данные являются только демонстрационными примерами, и ни в коей мере не ограничивают характеристик, заявленных донорно-акцепторных олигомеров.

[25]

Задача решается также тем, что разработан способ получения донорно-акцепторных олигомеров, заключающийся в том, что осуществляют реакцию конденсации Кневенагеля между кетоном, выбранным из ряда соединений общей формулы (II), и малононитрилом,

[26]

[27]

где n, m имеют вышеуказанные значения.

[28]

К реакции конденсации Кневенагеля относят конденсацию альдегидов или кетонов с соединениями, содержащими активную метиленовую группу, с образованием производных этилена (J. March, Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, McGraw-Hill, New York, NY: 1968, pp. 693, 697-698). В контексте данного изобретения реакция конденсации Кневенагеля между кетоном, выбранным из ряда соединений общей формулы (II), и малононитрилом приводит к замещению карбонильных групп в кетоне на дициановинильные с образованием донорно-акцепторного олигомера общей формулы (I). Общую схему реакции можно представить следующим образом:

[29]

[30]

В частности, реакцию конденсации Кневенагеля между кетоном и малононитрилом проводят в среде пиридина или его смеси с, по крайней мере, одним растворителем, выбранным из ряда толуол, тетрагидрофуран, хлороформ, дихлорэтан, хлорбензол, или смеси одного или нескольких из них, при этом пиридин является и катализатором. Наиболее предпочтительным является проведение реакции в каталитической среде пиридина без дополнительных органических растворителей. В этом случае, пиридин выполняет функцию как растворителя, так и катализатора. Необходимым условием проведения конденсации Кневенагеля является присутствие катализатора в реакционной среде. В качестве катализатора, могут быть использованы различные основания, например, органические (триэтиламин, пиридин, пиперидин, этилат натрия и др). или неорганические (ацетат аммония, гидроксиды металлов, например, NaOH, КОН, КОН, оксиды, Al2O3 и др., соли.), основания, а также их смеси с кислотами Льюиса (АlСl3, ТiСl4). Предпочтительным основанием является пиридин.

[31]

В частности, реакцию конденсации Кневенагеля между малононитрилом и кетоном проводят при температуре от +20 до +150°С, предпочтительно при температуре от +80 до +115°С. Проведение конденсации Кневенагеля при повышенных температурах способствует увеличению скорости реакции и повышению выхода целевого продукта.

[32]

В частности, реакцию конденсации Кневенагеля между малононитрилом и кетоном проводят при нагревании микроволновым излучением. Нагревание реакционной смеси можно проводить как традиционным способом, так и с использованием микроволнового излучения. Предпочтительно нагревание реакции за счет микроволнового излучения, поскольку в этом случае нагревание происходит более равномерно, без перегрева реакционной массы, что ведет к уменьшению побочных продуктов и снижению времени реакции.

[33]

Приведенные данные являются только демонстрационными примерами, и ни в коей мере не ограничивают характеристик заявленных донорно-акцепторных олигомеров.

[34]

После окончания реакции продукт конденсации выделяют по известным методикам. Например, добавляют воду и органический растворитель. Органическую фазу отделяют, промывают водой до нейтральной реакции и высушивают, после чего растворитель упаривают. В качестве органического растворителя может быть использован любой не смешивающийся или ограниченно смешивающийся с водой растворитель, например, выбранный из ряда эфиров: диэтиловый эфир, метилтретбутиловый эфир, или выбранный из ряда ароматических соединений: бензол, толуол, ксилол, или выбранный из ряда хлорорганических соединений: дихлорметан, хлороформ, четыреххлористый углерод, хлорбензол. Также для выделения могут использоваться смеси органических растворителей. Выделение продукта можно производить и без применения органических растворителей, например, отгонкой растворителей из реакционной смеси, или любым другим известным методом. Предпочтительным является выделение продукта отгонкой растворителя.

[35]

Очистку сырого продукта проводят любым известным методом, например, препаративной колоночной хроматографией в адсорбционном или эксклюзионом режиме, перекристаллизацией, дробным осаждением, дробным растворением или их любой комбинацией.

[36]

Чистоту и строение синтезированных соединений подтверждают совокупностью данных физико-химического анализа, хорошо известных специалистам, таких как хроматографические, спектроскопические, масс-спектроскопические. Наиболее предпочтительным подтверждением чистоты и структуры донорно-акцепторных олигомеров являются ЯМР-спектры на ядрах1H и кривые, полученные методом гельпроникающей хроматографии (см. Фиг. 4-6).

[37]

Исходные кетоны, выбранные из ряда соединений общей формулы (II), для синтеза донорно-акцепторных олигомеров получают в несколько стадий, используя для этого реакции органического и металлорганического синтеза в различной последовательности. Конкретный пример получения исходного кетона общей формулы (II), где n равно 2, m равно 3 проиллюстрирован ниже (см. Пример 1).

[38]

На Фиг. 1 в качестве иллюстрации представлены структурные формулы соединений наиболее близких по строению к заявляемым донорно-акцепторным олигомерам, но имеющие дициановинильные или алкилдициановинильные группы в качестве электроноакцепторных фрагментов.

[39]

На Фиг. 2 в качестве иллюстрации представлены ТГА кривые в азоте донорно-акцепторных олигомеров по примерам 2, 4, 4, 8, а также полного аналога олигомера по Примеру 2, но с алкильными (гексильными) заместителями (N(Ph-2T-DCN-Hex)3, Adv. Energy Mater. 2014, 4, 201301234).

[40]

На Фиг. 3 в качестве иллюстрации представлены спектры поглощения тонких пленок донорно-акцепторных олигомеров по Примерам 2, 4, 5, 8.

[41]

На Фиг. 4 представлен1H ЯМР спектр соединения по Примеру 2.

[42]

На Фиг. 5 представлен13С ЯМР спектр соединения по Примеру 2.

[43]

На Фиг. 6 представлены ГПХ кривая соединения, полученного по Примеру 2.

[44]

Изобретение может быть проиллюстрировано нижеприведенными примерами синтеза донорно-акцепторных олигомеров (см. Пример 2 и Таблицу 1 с Примерами 3-8). При этом использовали коммерчески доступные реагенты и растворители без дополнительной очистки: 1.6 M и 2.5 M растворы н-бутиллития (BuLi) в гексане, тетракис(трифенилфосфин) палладий (0) (Pd(PPh3)4), п-толуолсульфоновая кислота, (p-TosH), малононитрил, бензоилхлорид, 2,2-диметил-1,3-пропандиол, 2,2'-битиофен, и др. Дополнительные реагенты и вещества были получены, используя описанные в литературе методики. Все реакции, если не оговорено особо, проводили в атмосфере аргона.

[45]

Получение кетонов общей формулы (II) для синтеза донорно-акцепторных олигомеров.

[46]

Пример 1. Синтез кетона (7) общей формулы (II), где n равно 2, m равно 3, был осуществлен постадийно согласно приведенной ниже схеме:

[47]

[48]

Получение соединения 2. 2,2'-битиен-5-ил(фенил)метанон (2) был получен следующим образом: SnCl4 (15,15 г, 58,2 ммоль) был прикапан к смеси 2,2'-битиофена (9 г, 51,1 ммоль) и бензоил хлорида (7,61 г, 54,1 ммоль) в толуоле (80 мл) при 0°С. Реакционную смесь перемешивали в течение 2 часов при температуре 0-5°С. После завершения реакции в реакционную колбу был добавлен лед. Затем реакционную смесь вылили в 200 мл дистиллированной воды и экстрагировали дихлорэтаном. Органическую фазу отмывали дистиллированной водой и сушили над безводным Na2SO4. Растворитель был отогнан в вакууме и чистый продукт (12,73 г, 87%) был получен перекристаллизацией из гексана. Тпл: 75-76°С.1Н ЯМР (250 МГц, DMSO-D6, δ, м.д.): 7,07 (т, 1Н, J=3,96 Гц), 7,19 (д, 1H, J1=3,90 Гц), 7,35 (т, 2Н, J=4,89 Гц), 7,45-7,63 (перекрывающиеся сигналы, 4Н), 7,84 (д, 2Н, J=7,33 Гц).13С ЯМР (75 МГц, DMSO-D6): δ [м.д.] 124,93, 126,51, 127,91, 128,56, 128,60, 128,71, 132,34, 135,11, 136,62, 137,12, 140,56, 145,18, 186,67. Рассчитано (%) для C15H10OS2: С, 66,64; Н, 3,73; S, 23,72. Найдено: С,66,41; Н, 3,79; S, 23,63. MALDI-MS: найдено m/z 270,43; рассчитано для [М]+ 270,37.

[49]

Получение соединения 3. 2-(2,2'-битиен-5-ил)-5,5-диметил-2-фенил-1,3-диоксан (3) был получен следующим образом: 2,2'-битиен-5-ил(фенил)метанон (2) (8,0 г, 29,6 ммоль) растворили в сухом бензоле (160 мл). После добавили 2,2-диметил-1,3-пропандиол (18,49 г, 177.5 ммоль) и p-TosH (0.394 г, 2,1 ммоль). Реакцию перемешивали с насадкой Дина-Старка при кипячении 10 часов, после чего реакцию охладили и добавили 10 мл триэтиламина. Реакционную смесь вылили в 200 мл дистиллированной воды и трижды экстрагировали бензолом. Органический слой объединили и посушили над сульфатом натрия, а растворитель отогнали при пониженном давлении. Чистый продукт (9,23 г, 87%) был получен очисткой колоночной хроматографией на силикагеле (элюент, гексан). Белый порошок, Тпл: 57-58°С.1H ЯМР (250 МГц, DMSO-D6, δ, м.д.): 0,83 (с, 3Н), 1.02 (с, 3Н), 3,49 (д, 2Н, J=11 Гц), 3,63 (д, 2Н, J = 11 Гц), 6,67 (д, 1Н, J=3.7 Гц), 7,01-7,11 (перекрывающиеся сигналы, 2Н), 7,25 (дд, 1H, J1=J2=1 Гц), 7,31-7,55 (перекрывающиеся сигналы, 6Н).13С ЯМР (125 МГц, DMSO-D6): δ [м.д.] 21,77, 22,11, 29,57, 71,59, 98,75, 123,25, 124,12, 125,60, 126,21, 126,65, 128,28, 128,32, 128,53, 136,19, 136,84, 140,31, 145,70. Рассчитано (%) для C20H20O2S2: С, 67,38; Н, 5,65; S, 17,99. Найдено: С, 67,25; Н, 5,59; S, 17,89. MALDI MS: найдено m/z 356,42; рассчитано для [М]+ 356,51.

[50]

Получение соединения 4. 5,5-диметил-2-фенил-2-[5'-(4,4,5,5-тетраметил-1,3,2-диоксоборолан-2-ил)-2,2'-битиен-5-ил]-1,3-диоксан (4) был получен следующим образом: 1.6 M раствор бутиллития (13,7 мл, 22 ммоль) был прикапан к раствору соединения 3 (7,8 г, 22 ммоль) в 203 мл сухого ТГФ при -78°С. После чего реакцию перемешивали при -78°С в течение часа и добавили изопропокси-4,4,5,5-тетраметил-1,3,2-диоксоборолан (4,07 г, 22 ммоль) одной порцией. Реакцию перемешивали в течение часа при -78°С и после подняли температуру до комнатной. После завершения реакции реакционную смесь вылили в 200 мл дистиллированной воды, содержащей 22 мл 1 M НСl и трижды экстрагировали диэтиловым эфиром. Органический слой посушили над сульфатом натрия, а растворитель отогнали в вакууме. Продукт 10,43 г (99%) был использован в следующей стадии синтеза без дополнительной очистки. Серый порошок, Тпл: 71-72°С.1H ЯМР (250 МГц, DMSO-D6, δ, м.д.): 0,82 (с, 3Н), 1,02 (с, 3Н), 1,27 (с, 12Н), 3,49 (д, 2Н, J=11 Гц), 3,63 (д, 2Н, J=11 Гц), 6,71 (д, 1Н, J=3.7 Гц), 7,16 (д, 1Н, J=3,7 Гц), 7,27-7,53 (перекрывающиеся сигналы, 7Н).13С ЯМР (125 МГц, DMSO-D6): δ [м.д.] 21,75, 22,07, 24,51, 25,10, 29,56, 66,99, 71,58, 84,10, 98,72, 124,41, 125,40, 126,19, 126,76, 128,30, 128,54, 136,25, 138,39, 140,20, 143,09, 146,81. Расчитано (%) для C26H31BO4S2: С, 64,73; Н, 6,48; S, 13,29. Found: С, 64,69; Н, 6,39; S, 13,18. MALDI-MS: найдено m/z 482,36; рассчитано для [М]+ 482,47.

[51]

Получение соединения 6. Трис{4-[5'-(5,5-диметил-2-фенил-1,3-диоксан-2-ил)-2,2'-битиен-5-ил]фенил}амин (6) был получен следующим образом. В инертной атмосфере к Рd(РРh3)4 (173 мг, 0,14 ммоль) были добавлены дегазированные растворы соединения 4 (2.88 г, 6 ммоль) и 5 (0,8 g, 2 ммоль) в смеси толуол/этанол (50/5 мл), а также водный раствор 2М Nа2СО3 (9 мл). Реакционную смесь перемешивали при кипении в течение 8 часов, после чего ее охладили до комнатной температуры и вылили в делительную воронку, содержащую 75 мл дистилированной волы и 100 мл толуола. Водный слой трижды экстрагировали толуолом, и объединенный органический слой посушили над сульфатом натрия, а растворитель отогнали в вакууме. Чистый продукт был получен хроматографически очисткой на колонке с силикагелем (элюент - толуол). Выход продукта 6 (1,74 г) составил 80%. Темно-желтый порошок, Тпл: 115-116°С.1H ЯМР (250 МГц, CDCl3): δ [м.д.] 0.88 (с, 9Н), 1,16 (с, 9Н), 3,59 (д, 6Н, J=11 Гц), 3,69 (д, 6Н, J=11 Гц), 6,64 (д, 3Н, J=3,7 Гц), 6,93-6.97 (уширенный сигнал, 3Н), 7,07-7,13 (перекрывающиеся пики, 12Н), 7,32-7,49 (перекрывающиеся пики, 15Н), 7,57 (д, 6Н).13С ЯМР (125 МГц, DMSO-D6): δ [м.д.] 22,21, 22,67, 30,03, 72,43, 99,55, 122,73, 123,06, 124,37, 124,60. Рассчитано (%) for C78H69NO6S6: С, 71,58; Η, 5,31; S, 14,70; Ν, 1,07. Найдено: С, 71,50; Η, 5,27; S, 14,65; Ν, 1,04. MALDI-MS: найдено m/z 1308,73; рассчитано для [М]+ 1308,81.

[52]

Получение соединения 7. [нитрилотрис(4,1-фенилен-2,2'-битиен-5',5-диил)трис(фенилметанон) (7) был получен следующим образом: 2,4 мл 1М НСl добавили к раствору соединения 6 (1,5 g, 1 ммоль) в ТГФ (30 мл) и перемешивали реакцию при кипении в течение 3 часов. После чего реакционную смесь охладили, профильтровали. Продукт полученный на фильтре обильно промыли водой. После чего, растворили в ТГФ (50 мл), добавили к раствору 2 мл 1М НСl и перемешивали реакцию при кипении в течение 1,5 часов. Реакционную смесь охладили, профильтровали, полученный на фильтре продукт промыли водой и посушили в вакууме. Выход продукта 7 (1,15 г) составил 95%. Красный порошок, Тпл: 202-203°С.1Н ЯМР (250 МГц, CDCl3): δ [м.д.] 7,04-7,38 (перекрывающиеся сигналы, 15Н), 7,42-7,68 (перекрывающиеся сигналы, 18Н), 7,84 (д, 6Н, J=7,32 Гц). Рассчитано (%) для C63H39N7O3S6: С, 72,04; Н, 3,74; N, 1,33; S, 18,32. Найдено: С, 72,09; Н, 3,78; N, 1,34; S, 18,29. MALDI MS: найдено m/z 1050,58; рассчитано для [М]+ 1050,40.

[53]

Получение донорно-акцепторных олигомеров.

[54]

Пример 2. Общая методика способа получения донорно-акцепторных олигомеров общей формулы (I) реакцией конденсации Кневенагеля между малононитрилом и кетоном, выбранным из ряда соединений общей формулы (II), приведена ниже на примере полученного выше кетона (соединение 7, пример 1), где n равно 2, m равно 3:

[55]

[56]

Кетон из примера 1 (0,65 g, 0.6 ммоль), малононитрил (0,2 g, 3,1 ммоль) и пиридин помещаются в реакционный сосуд и перемешиваются в атмосфере азота в течение 25 часов при 100-115°С, используя контролируемый микроволновый нагрев. После окончания реакции пиридин отгоняют при пониженном давлении. Продукт очищают методом колоночной хроматографии на силикагеле (элюент дихлорметан), с последующим очисткой методом переосаждения. Выход продукта (0,55 г) составил 75%. Черный порошок, Тпл: 247°С.1Н ЯМР (250 МГц, CDCl3): δ [м.д.] 7,15 (д, 6Н, J=8,7 Гц), 7,23 (д, 3Н, J=4,0 Гц), 7,26 (д, 6Н, J=3,8 Гц), 7,33 (д, 3Н, J=4,0 Гц), 7,44-7,66 (перекрывающиеся сигналы, 24Н).13С ЯМР (125 МГц, CDCl3): δ [м.д.] 114,12, 114,78, 123,87, 124,52, 126,86, 127,85, 128,40, 128,79, 129,30, 131,56, 133,74, 135,88, 136,12, 138,51, 146,44, 146,82, 148,65, 163,73. Рассчитано (%) для C72H39N7S6: С, 72,40; Н, 3,29; N, 8,21; S, 16,11. Найдено: С, 72,33; Н, 3,25; N, 8,14; S, 16,09. MALDI MS: найдено m/z 1194,54; рассчитано для [М]+ 1194,21.

[57]

Другие примеры (Примеры 3-8) донорно-акцепторных олигомеров общей формулы (I), полученных аналогичным способом, представлены в Таблице 1.

[58]

Как компенсировать расходы
на инновационную разработку
Похожие патенты