патент
№ RU 2564057
МПК G04F13/00

УСТРОЙСТВО ФОРМИРОВАНИЯ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ, ИМИТИРУЮЩИХ ОДНОВРЕМЕННОЕ СРАБАТЫВАНИЕ ГРУППЫ ЭЛЕКТРОКОНТАКТНЫХ ДАТЧИКОВ

Авторы:
Ловягин Борис Михайлович Скегин Владимир Романович Дулин Олег Николаевич
Все (5)
Номер заявки
2014126457/28
Дата подачи заявки
30.06.2014
Опубликовано
27.09.2015
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к области измерительной техники и может быть использовано при исследованиях однократных быстропротекающих физических процессов с помощью электроконтактных датчиков. Устройство содержит кабельные линии каналов измерения интервалов времени, источник зарядки кабельных линий, соединенный с зарядным резистором, и коммутатор для соединения жил заряженных кабельных линий каналов измерения интервалов времени с оплетками. Также дополнительно содержит генератор пускового сигнала и устройство преобразования пускового сигнала, в состав которого входят оптрон, MOSFET-транзистор, драйвер MOSFET-транзистора и источник питания, а также резисторы нагрузки MOSFET-транзистора и оптрона, коммутатор является электронным и выполнен на силовом IGBT модуле, затвор электронного коммутатора соединен с истоком MOSFET-транзистора и через резистор нагрузки MOSFET-транзистора соединен с выходом VS драйвера MOSFET-транзистора. Сток MOSFET-транзистора, вход VCC драйвера MOSFET-транзистора и катод фотодиода оптрона соединены с положительным выводом источника питания. Затвор MOSFET-транзистора соединен с выходом НО драйвера MOSFET-транзистора, вход IN которого соединен с анодом фотодиода оптрона. Анод светодиода оптрона соединен с выходом генератора пускового сигнала. Отрицательный вывод источника зарядки кабельных линий каналов измерения интервалов времени через зарядный резистор соединен с жилами кабельных линий каналов измерения интервалов времени, входом СОМ драйвера MOSFET-транзистора, отрицательным выводом источника питания и эмиттером электронного коммутатора. Резистор нагрузки оптрона одним выводом соединен с анодом фотодиод�

Формула изобретения

Устройство формирования электрических сигналов, имитирующих одновременное срабатывание группы электроконтактных датчиков, содержащее кабельные линии каналов измерения интервалов времени, источник зарядки кабельных линий, соединенный с зарядным резистором, и коммутатор для соединения жил заряженных кабельных линий каналов измерения интервалов времени с оплетками, отличающееся тем, что устройство дополнительно содержит генератор пускового сигнала и устройство преобразования пускового сигнала, в состав которого входят оптрон, MOSFET-транзистор, драйвер MOSFET-транзистора и источник питания, а также резисторы нагрузки MOSFET-транзистора и оптрона, коммутатор является электронным и выполнен на силовом IGBT модуле, затвор электронного коммутатора соединен с истоком MOSFET-транзистора и через резистор нагрузки MOSFET-транзистора соединен с выходом VS драйвера MOSFET-транзистора, сток MOSFET-транзистора, вход VCC драйвера MOSFET-транзистора и катод фотодиода оптрона соединены с положительным выводом источника питания, затвор MOSFET-транзистора соединен с выходом HO драйвера MOSFET-транзистора, вход IN которого соединен с анодом фотодиода оптрона, анод светодиода оптрона соединен с выходом генератора пускового сигнала, отрицательный вывод источника зарядки кабельных линий каналов измерения интервалов времени через зарядный резистор соединен с жилами кабельных линий каналов измерения интервалов времени, входом COM драйвера MOSFET-транзистора, отрицательным выводом источника питания и эмиттером электронного коммутатора, резистор нагрузки оптрона одним выводом соединен с анодом фотодиода оптрона, вторым - с жилами кабельных линий каналов измерения интервалов времени, положительный вывод источника зарядки кабельных линий, коллектор электронного коммутатора, катод светодиода оптрона, земляная клемма генератора пускового сигнала и оплетки кабельных линий каналов измерения интервалов времени соединены с земляной шиной.

Описание

[1]

Изобретение относится к области измерительной техники и может быть использовано при исследованиях однократных быстропротекающих физических процессов, сопровождаемых многоканальными измерениями интервалов времени между электрическим сигналом, инициирующим физический процесс в исследуемом объекте, и сигналами, формируемыми при замыкании электроконтактных датчиков (ЭКД) в ходе развития процесса.

[2]

В простейшем случае ЭКД представляет центральный проводник, заключенный в коаксиальный корпус и изолированный от него. Центральный проводник ЭКД подсоединяют к жиле длинной кабельной линии канала измерения интервалов времени, которую перед проведением измерений заряжают статическим напряжением отрицательной полярности, корпус ЭКД подсоединяют к оплетке кабельной линии. При воздействии на ЭКД динамической нагрузки происходит замыкание центрального проводника на корпус ЭКД и по кабельной линии распространяется положительный перепад напряжения, поступающий на вход устройства формирования сигналов, в котором перепад напряжения преобразуется в сигнал положительной полярности. С выхода устройства формирования сигналов этот сигнал подают на информационный вход устройства измерения интервалов времени, на пусковой вход которого приходит сигнал, формируемый одновременно с началом исследуемого физического процесса, и проводят измерение интервала времени между началом исследуемого процесса и срабатыванием ЭКД [1].

[3]

Количество ЭКД и, соответственно, каналов измерения интервалов времени при исследованиях однократных быстропротекающих процессов в большинстве экспериментов находится в пределах от нескольких единиц до нескольких сотен.

[4]

При замыкании ЭКД, подсоединенного к кабельной линии с волновым сопротивлением 50 Ом, заряженной до напряжения минус 200 В (максимального по абсолютной величине напряжения зарядки в методике измерений интервалов времени, применяющей ЭКД), по линии распространяется электрический сигнал с амплитудой тока 4 А, таким образом, суммарный ток в измерительных каналах при наличии 100 ЭКД составляет величину 0,4 кА.

[5]

Перед проведением измерений проводится проверка функционирования измерительных каналов, позволяющая убедиться в их нормальной работе.

[6]

С этой целью осуществляется поочередное замыкание вручную жил всех кабельных линий, от которых на время проверки отсоединяются центральные проводники ЭКД, на общий провод (оплетку кабеля), что имитирует срабатывание ЭКД и формирует сигнал, поступающий на вход измерительного канала при срабатывании ЭКД.

[7]

Простейшим устройством для коммутации жил и оплеток заряженных кабельных линий является проводник, один конец которого при проверке соединен с оплеткой кабельной линии, другой кратковременно вручную соединяется с ее жилой.

[8]

Указанное устройство, с помощью которого имитировалось срабатывание ЭКД и формировался сигнал на входе измерительного канала, применялось при проведении исследований, приведенных в [1], и принято за прототип.

[9]

При такой проверке вывод о характере функционирования измерительных каналов делался путем анализа характеристик электрических сигналов на выходах устройств формирования сигналов, зарегистрированных с помощью осциллографа.

[10]

Недостатком этого способа формирования сигналов является то, что устройства измерения интервалов времени между началом исследуемого процесса и замыканием ЭКД, также входящие в состав измерительных каналов, не включены в число контролируемых при проверке функционирования измерительных каналов перед проведением измерений, поскольку для их пуска требуется сигнал, опережающий момент замыкания ЭКД, который отсутствует при указанной выше проверке.

[11]

Вторым его недостатком является то, что при большом количестве ЭКД на поочередное замыкание кабелей и анализ зарегистрированных осциллограмм при проверке измерительных каналов требуется значительное время, что приводит к увеличению продолжительности проведения проверки функционирования измерительных каналов.

[12]

Для включения устройств измерения интервалов времени в число проверяемых необходимо обеспечить формирование одновременно с электрическим сигналом, инициирующим исследуемый физический процесс, сигнала для пуска устройств измерения интервалов времени, осуществить с задержкой относительно пускового сигнала одновременное замыкание жил всех кабельных линий на общий провод для формирования на входах кабелей измерительных каналов сигналов, поступающих при одновременном срабатывании всех ЭКД, сигналы с выходов устройств формирования подать на соответствующие информационные входы устройств измерения интервалов времени и провести измерения по всем каналам интервалов времени между пусковым сигналом и сигналами, имитирующими срабатывание ЭКД. При этом также уменьшается продолжительность проверки измерительных каналов, поскольку проверка всех каналов выполняется одновременно.

[13]

В случае когда задержка между пусковым сигналом и замыканием кабельных линий будет равна расчетному времени развития исследуемого физического процесса, проверка будет наиболее близкой к реальным условиям.

[14]

Из-за большого суммарного тока в измерительных каналах при увеличении количества ЭКД и необходимости формирования опережающего сигнала для запуска устройств, регистрирующих интервалы времени, выполнить перечисленные выше условия для включения устройств измерения интервалов времени в число проверяемых с помощью устройства-прототипа невозможно.

[15]

Техническим результатом изобретения является включение устройств измерения интервалов времени в число контролируемых при проверке функционирования измерительных каналов перед проведением измерений, а также уменьшение продолжительности проведения проверки функционирования измерительных каналов.

[16]

Технический результат достигается тем, что устройство формирования электрических сигналов, имитирующих одновременное срабатывание группы электроконтактных датчиков, содержащее кабельные линии каналов измерения интервалов времени, источник зарядки кабельных линий, соединенный с зарядным резистором, и коммутатор для соединения жил заряженных кабельных линий каналов измерения интервалов времени с оплетками, устройство дополнительно содержит генератор пускового сигнала и устройство преобразования пускового сигнала, в состав которого входят оптрон, MOSFET-транзистор, драйвер MOSFET-транзистора и источник питания, а также резисторы нагрузки MOSFET-транзистора и оптрона, коммутатор является электронным и выполнен на силовом IGBT модуле, затвор электронного коммутатора соединен с истоком MOSFET-транзистора и через резистор нагрузки MOSFET-транзистора соединен с выходом VS драйвера MOSFET-транзистора, сток MOSFET-транзистора, вход VCC драйвера MOSFET-транзистора и катод фотодиода оптрона соединены с положительным выводом источника питания, затвор MOSFET-транзистора соединен с выходом НО драйвера MOSFET-транзистора, вход IN которого соединен с анодом фотодиода оптрона, анод светодиода оптрона соединен с выходом генератора пускового сигнала, отрицательный вывод источника зарядки кабельных линий каналов измерения интервалов времени через зарядный резистор соединен с жилами кабельных линий каналов измерения интервалов времени, входом СОМ драйвера MOSFET-транзистора, отрицательным выводом источника питания и эмиттером электронного коммутатора, резистор нагрузки оптрона одним выводом соединен с анодом фотодиода оптрона, вторым - с жилами кабельных линий каналов измерения интервалов времени, положительный вывод источника зарядки кабельных линий, коллектор электронного коммутатора, катод светодиода оптрона, земляная клемма генератора пускового сигнала и оплетки кабельных линий каналов измерения интервалов времени соединены с земляной шиной.

[17]

Применение электронного коммутатора для замыкания двух групп контактов до настоящего времени сдерживалось значительным (более 102 А при количестве измерительных каналов более 25) коммутируемым током.

[18]

Кроме того, необходимость коммутации с землей (общей шиной) группы контактов, заряженных по отношению к ней отрицательно, делает невозможным применение традиционной схемы включения транзисторов типа p-n-р, на основе которого может быть создан электронный коммутатор, согласно которой к земле подсоединяют эмиттер транзистора, а на коллектор подают положительный потенциал.

[19]

Эти проблемы устранены в предлагаемом устройстве.

[20]

На чертеже представлена электрическая схема устройства формирования электрических сигналов, имитирующих одновременное срабатывание группы ЭКД.

[21]

Принятые на чертеже обозначения:

[22]

1 - генератор пускового сигнала;

[23]

2 - источник зарядки кабельных линий;

[24]

3 - зарядный резистор;

[25]

4 - устройство преобразования пускового сигнала;

[26]

5 - источник питания;

[27]

6 - оптрон;

[28]

7 - резистор нагрузки оптрона;

[29]

8 - драйвер MOSFET-транзистора;

[30]

9 - MOSFET-транзистор;

[31]

10 - резистор нагрузки MOSFET-транзистора;

[32]

11 - электронный коммутатор;

[33]

12 - кабельные линии каналов измерения интервалов времени.

[34]

Устройство формирования электрических сигналов содержит генератор 1 пускового сигнала, источник 2 зарядки кабельных линий с зарядным резистором 3, устройство 4 преобразования пускового сигнала, в состав которого входят источник питания 5, оптрон 6, резистор 7 нагрузки оптрона, драйвер 8 MOSFET-транзистора, MOSFET-транзистор 9, резистор 10 нагрузки MOSFET-транзистора, а также электронный коммутатор 11 и кабельные линии 12 каналов измерения интервалов времени.

[35]

Затвор электронного коммутатора 11 соединен с истоком MOSFET-транзистора 9 и через резистор 10 нагрузки соединен с выходом VS драйвера 8 MOSFET-транзистора, сток MOSFET-транзистора 9, вход VCC драйвера 8 MOSFET-транзистора и катод фотодиода оптрона 6 соединены с положительным выводом источника питания 5, затвор MOSFET - транзистора 9 соединен с выходом НО драйвера 8 MOSFET-транзистора, вход IN которого соединен с анодом фотодиода оптрона 6, анод светодиода оптрона 6 соединен с выходом генератора 1 пускового сигнала, отрицательный вывод источника 2 зарядки кабельных линий через зарядный резистор 3 соединен с жилами кабельных линий 12, входом СОМ драйвера 8 MOSFET-транзистора, отрицательным выводом источника питания 5 и эмиттером электронного коммутатора 11, резистор 7 нагрузки оптрона одним выводом соединен с анодом фотодиода оптрона 6, вторым - с жилами кабельных линий 12, положительный выход источника 2 зарядки кабельных линий, коллектор электронного коммутатора 11, катод светодиода оптрона 6, земляная клемма генератора 1 пускового сигнала и оплетки кабельных линий 12 соединены с земляной шиной.

[36]

Устройство формирования электрических сигналов работает следующим образом. Сигнал с генератора 1 пускового сигнала, имеющий положительную полярность и амплитуду 10 В, поступает на светодиод оптрона 6. С фотодиодной части оптрона 6 сигнал, выделившийся на резисторе 7, поступает на вход VCC драйвера 8 MOSFET-транзистора.

[37]

Далее сигнал с выхода НО драйвера 8 MOSFET-транзистора через усилитель тока, выполненный на MOSFET-транзисторе 9 и резисторе 10, поступает на затвор электронного коммутатора 11, выполненного на силовом IGBT модуле. Кабели 12 измерительных каналов, заряженные до заданного отрицательного напряжения (например, минус 200 В) от источника 2 зарядки кабельных линий через зарядный резистор 3, разряжаются электронным коммутатором 11, при этом в них формируются положительные перепады напряжения от отрицательного зарядного до нуля, поступающие на входы устройства формирования сигналов ЭКД, в котором они преобразуются в сигналы положительной полярности амплитудой, близкой к зарядному напряжению кабелей, и далее поступают на входы устройства измерения интервалов времени между началом физического процесса и моментом замыкания ЭКД. Питание оптрона 6, MOSFET-транзистора 9 и драйвера 8 MOSFET-транзистора, входящих в устройство 4 преобразования пускового сигнала, осуществляется от источника питания 5.

[38]

В качестве генератора 1 пускового сигнала, обеспечивающего формирование пускового сигнала для запуска устройства измерения интервалов времени и второго сигнала, задержанного относительно пускового, необходимого для срабатывания электронного коммутатора, может быть применен генератор сигналов Tektronix AFG 3252.

[39]

В качестве источника питания 5, обеспечивающего питание схемы устройства 4 преобразования пускового сигнала постоянным напряжением амплитудой 15 В, может быть применен преобразователь напряжения TMLM05115 фирмы Traco.

[40]

В качестве источника 2 зарядки кабельных линий может быть применен источник питания Б5-32.

[41]

В качестве электронного коммутатора 11 может быть применен силовой IGBT модуль МТКИ-400-12Н, максимальный ток коллектора которого составляет 800 А. Как отмечалось, при замыкании одной кабельной линии, заряженной до напряжения 200 В, по ней распространяется электрический сигнал с амплитудой тока 4 А, что дает возможность с помощью предлагаемого устройства осуществить коммутацию не менее 200 кабельных линий.

[42]

Схема формирования сигналов, преобразующая перепады напряжения в кабельных линиях в электрические сигналы, принимаемые устройством измерения интервалов времени, приведена в [1], в качестве многоканального устройства измерения интервалов времени может быть применено 1024-канальное устройство преобразования информации СУПИ62.

[43]

ЛИТЕРАТУРА

[44]

1. Методы исследования свойств материалов при интенсивных динамических нагрузках. Монография. Под общ. ред. д-ра физ.-мат. наук М.В. Жерноклетова. Саров, ФГУП РФЯЦ «ВНИИЭФ», 2003 г., стр. 74-79.

Как компенсировать расходы
на инновационную разработку
Похожие патенты