патент
№ RU 2619704
МПК D06M10/00

Способ получения текстильного материала с антибактериальными свойствами для спецодежды

Авторы:
Хамматова Венера Василовна Сайфутдинова Ильмира Фаритовна Шатаева Дина Расулевна
Все (9)
Номер заявки
2016119712
Дата подачи заявки
20.05.2016
Опубликовано
17.05.2017
Страна
RU
Дата приоритета
14.06.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к способам получения текстильных материалов, которые могут быть использованы для пошива одежды специального назначения для энергетического, строительного, нефтехимического и оборонно-промышленного комплекса. Описан способ получения текстильного материала с антибактериальными свойствами для спецодежды, включающий обработку низкотемпературной плазмой высокочастотного разряда пониженного давления, последующую пропитку коллоидным водным раствором наночастиц серебра и сушку, в котором плазменную обработку проводят низкотемпературной плазмой высокочастотного емкостного разряда пониженного давления в течение 120 с в среде плазмообразующего газа воздуха с расходом 0,04 г/с, при давлении в рабочей камере 26,6 Па и мощностью разряда 3,5-4,0 кВт, пропитку ведут коллоидным водным раствором наночастиц серебра с концентрацией 0,05-0,1 г/дм. Технический результат: получен текстильный материал с антибактериальными свойствами, с улучшенными эксплуатационными характеристиками, обладающий стойкостью к агрессивным средам для одежды специального назначения энергетического, строительного, нефтехимического и оборонно-промышленного комплекса. 1 пр., 1 табл.

Формула изобретения

Способ получения текстильного материала с антибактериальными свойствами для спецодежды, включающий обработку низкотемпературной плазмой высокочастотного разряда пониженного давления, последующую пропитку коллоидным водным раствором наночастиц серебра и сушку, отличающийся тем, что плазменную обработку проводят низкотемпературной плазмой высокочастотного емкостного разряда пониженного давления в течение 120 с в среде плазмообразующего газа воздуха с расходом 0,04 г/с, при давлении в рабочей камере 26,6 Па и мощностью разряда 3,5-4,0 кВт, пропитку ведут коллоидным водным раствором наночастиц серебра с концентрацией 0,05-0,1 г/дм3.

Описание

Изобретение относится к антимикробным текстильным материалам, которые могут быть использованы для пошива одежды специального назначения для энергетического, строительного, нефтехимического и оборонно-промышленного комплекса, обладающие улучшенными эксплуатационными и защитными свойствами.

В настоящее время среди технических текстильных материалов выделяют перспективный вид, создание которого связано с развитием нано- и биотехнологий и использованием последних достижений физики и химии. Это так называемый функционально активный текстиль, каждый конкретный вариант которого разрабатывается в соответствии с определенным назначением, которое определяет, какие модифицирующие компоненты используются для придания текстилю тех или иных свойств.

Согласно официально принятым стандартам качества, основными требованиями, предъявляемыми к спецодежде, являются: износостойкость, защита от повышенных и пониженных температур, защита от морской воды, кислот и щелочей, нефтепродуктов. Спецодежда при носке должна обладать антибактериальным эффектом, поскольку работник находится в ней длительное время. Подавление роста патогенных микроорганизмов в пододежном пространстве приводит к уменьшению неприятного запаха, что позволяет использовать изделие без стирки более длительный промежуток времени.

Для придания антибактериальных свойств текстильные материалы пропитывают различными бактерицидными агентами.

Известны способы получения антибактериальных материалов и изделий из них, в которых в качестве бактерицидного агента используют ионы серебра (патенты RU 74774, RU 86598); повидон-йод, фурацилин, хлоргексидин, биглюконат или фурагин (патент RU 2502524); бактерицидную добавку «ДЕЗАНТ» (патент RU 126007), раствор йодпирона (патент RU 2015233).

Недостатком известных материалов является отсутствие стойкости к агрессивным средам, что не позволяет использовать их для пошива спецодежды.

Наиболее близким по совокупности существенных признаков является способ получения антибактериального материала («Получение антибактериальных текстильных материалов методом нанесения наночастиц серебра в условиях плазмы высокочастотного индукционного разряда пониженного давления» / Ю.А. Тимошина, Е.А.Сергеева // Вестник Казанского технологического университета. - 2014. - №2. - С. 106-108). Способ включает обработку текстильного материала неравновесной низкотемпературной плазмой высокочастотного индукционного (ВЧИ) разряда пониженного давления при давлении в рабочей камере 26,6 Па, мощности разряда 1,4 кВт (напряжение на аноде 4 кВ, сила тока на аноде 1 А) в среде плазмообразующего газа аргона с расходом 0,04 г/с в течение 60 с, последующую пропитку коллоидным водным раствором наночастиц серебра с концентрацией 0,1-1,0 г/дм3 и сушку материала.

Однако полученные антибактериальные материалы рекомендованы для изготовления одноразовой медицинской одежды и белья, а также медицинских одноразовых средств индивидуальной защиты. Антибактериальный эффект полученных материалов значительно снижается после 5 стирок. Также авторами не приведены сведения о стойкости материалов к агрессивным средам. Используемый в прототипе ВЧИ разряд плазменной обработки позволяет обработать лишь поверхность материала.

Задачей заявляемого изобретения является разработка способа получения текстильного материала для спецодежды, обладающего стойкостью к агрессивным средам (кислота, щелочь, нефть, морская вода) и антибактериальными свойствами, сохраняющимися длительное время.

Задача решается способом получения текстильного материала с антибактериальными свойствами для спецодежды, включающим обработку текстильного материала низкотемпературной плазмой высокочастотного емкостного (ВЧЕ) разряда пониженного давления в вакуумной камере при давлении 26,6 Па, мощности разряда 3,5-4,0 кВт в среде плазмообразующего газа воздуха с расходом 0,04 г/с в течение 120 с, последующую пропитку коллоидным водным раствором наночастиц серебра с концентрацией 0,05-0,1 г/дм3 и сушку.

Решение технической задачи обеспечивает получение текстильного материала для спецодежды, обладающего стойкостью к действию агрессивных сред при сохранении и увеличении физико-механических и гигиенических характеристик, а также антибактериальными свойствами, сохраняющимися длительное время (антибактериальный эффект сохраняется после 10 стирок).

В предлагаемом способе в отличие от прототипа для плазменной обработки используют ВЧЕ разряд, за счет чего происходит как поверхностная, так и объемная модификация волокон текстильного материала. В результате увеличиваются физико-механические и гигиенические свойства, стойкость материала к агрессивным средам. Благодаря плазменной обработке увеличивается адгезия материала к ионам серебра, что позволяет закрепить наночастицы серебра по всему объему материала и способствует сохранению антибактериального эффекта длительное время после неоднократных стирок.

Изобретение иллюстрируется следующими примерами.

Использовали следующие ткани, применяемые для пошива одежды специального назначения:

ткань 1 - суровье арт. 18422 Премьер Комфорт 250 с пропиткой (состав 80% - хлопок + 20% п/э);

ткань 2 - суровье артукул 10408 «Премьер Cotton 300» с пропиткой (состав 100% - хлопок);

ткань 3 - суровье арт. 18422а/Х-М «Премьер Комфорт 250А» с пропиткой (состав 80% - хлопок + 20% - п/э + антистатическая нить);

ткань 4 - суровье арт. 10202AM «Премьер FR-350» с пропиткой (состав 100% - хлопок + антистатическая нить).

Плазменную обработку тканей проводили на высокочастотной вакуумной плазменной установке (ВВПУ) для модификации тканей «ВАТТ 1500 Р/Р - Плазма 3».

Пропитку осуществляли посредством полного погружения каждого образца в коллоидный раствор наночастиц серебра, время пропитки составляло от 10 до 20 минут, температура раствора 20-24°С. После пропитки образцы материала извлекали из раствора, сушили в подвешенном состоянии без прямого попадания солнечных лучей до полного высыхания. Раствор необходимой концентрации получали путем разбавления исходного раствора наночастиц серебра с концентрацией 10 г/л дистиллированной водой в соответствии с ГОСТ 6709-72.

Пример 1

Образец ткани 1 помещали в рабочую камеру установки ВВПУ, вакуумировали, затем в камеру подавали плазмообразующий газ-воздух с расходом Gвозд=0,04 г/с до установления рабочего давления Рк=26,6 Па, устанавливали напряжение и силу тока на электродах до мощности Wp=4,0 кВт. Обработку проводили в течение 120 с. Образец извлекали из вакуумной камеры, пропитывали коллоидным раствором наночастиц серебра с концентрацией 0,05 г/дм3 и высушивали.

Примеры 2-12 аналогичны примеру 1. Виды тканей, режимы обработки и свойства обработанных тканей в сравнении с необработанными приведены в таблице.

У обработанного и контрольного (необработанного) образцов определяли следующие физико-механические характеристики:

- разрывную нагрузку и относительное разрывное удлинение по ГОСТ 29104.4-91;

- стойкость к истиранию - ГОСТ 9913-90;

- жесткость при изгибе - ГОСТ 10550-93;

- водоупорность - ГОСТ Р 51553-99;

- стойкость к морской воде - ГОСТ 9733.9-83;

- стойкость к нефти - ГОСТ 12.4.220-2002;

- стойкость к щелочи - ГОСТ 12.4.220-20024;

- стойкость к кислоте - ГОСТ 12.4.220-2002.

Для оценки антибактериальной активности полученных текстильных материалов использовали стандартный метод исследования чувствительности микроорганизмов к действию антибиотиков и антисептиков на твердых питательных средах (диффузионный метод бумажных дисков) в модификации.

Метод основан на диффузии антисептика в толщу агара и образовании так называемых зон ингибиции. Антимикотическую и антибактериальную активность образцов исследовали на тест-культурах патогенной и условно-патогенной микрофлоры. В работе использовали штаммы: Escherichia coli 055, Salmonella paratyphi В, Pseudomonas aeruginosa АТСС - 9027, Staphylococcus aureu 6538-Ps, Candida albicans. Используемые в данном исследовании тест-культуры традиционно являются модельными, имеют общие происхождение, механизмы хранения и реализации наследственной информации, а также схожесть метаболизма с микроорганизмами, присутствующими в микрофлоре человека. Показателем антибактериального эффекта является размер зоны задержки роста микроорганизмов (зоны ингибиции).

Зоны ингибиции определяли у обработанных образцов до и после 10 циклов промывки, имитирующих циклы стирки в обычных условиях эксплуатации изделия. Промывку образцов производили в течение 20 минут в среде водопроводной воды с добавлением ПАВ при температуре воды 40°С. После каждой промывки образцы высушивали при комнатной температуре. Результаты исследования представлены в таблице.

Анализ табличных данных показывает, что обработка материала в режимах Рк=26,6 Па, Wp=3,5-4kBt, Gвозд=0,04 г/с является оптимальной. При обработке материалов плазмой мощностью менее 3,5 кВт и более 4 кВт стойкость обработанных образцов к агрессивным средам по сравнению с необработанными образцами не изменяется или изменяется незначительно. При времени обработки менее 120 секунд физико-механические и гигиенические свойства (гигроскопичность) обработанных образцов по сравнению с необработанными практически не изменяются. При времени обработки более 120 с физико-механические и гигиенические свойства материала снижаются. Температура плазменной обработки текстильных материалов не должна превышать 80°С, поэтому рабочее давление в камере составляет Р=26,6 Па, так как при таком давлении обеспечивается оптимальный температурный режим обработки.

Из таблицы видно, что разрывная нагрузка обработанных образцов текстильных материалов повышается на 20-80%, относительное удлинение 5-20%, стойкость к истиранию 5-50%, жесткость при изгибе 5%, водоупорность на 5%, гигроскопичность на 5-30% по сравнению с контрольными образцами в зависимости от состава ткани.

Исследования, проведенные на модельных тест-культурах, показывают, что зоны ингибиции обработанных образцов составляют от 22-25 мм и сохраняются после 10 стирок. Зоны ингибиции контрольных образцов отсутствуют. Следовательно, полученные предлагаемым способом текстильные материалы обладают антибактериальными свойствами по отношению к патогенной микрофлоре и сохраняются в течение длительного времени.

Таким образом, предлагаемый способ позволяет получить текстильный материал для спецодежды, обладающий стойкостью к действию агрессивных сред при сохранении и увеличении физико-механических и гигиенических характеристик, а также антибактериальными свойствами, сохраняющимися длительное время. Предлагаемый способ может быть использован как для обработки текстильных материалов, так и для обработки готовых изделий.

Как компенсировать расходы
на инновационную разработку
Похожие патенты