патент
№ RU 2685908
МПК C22C19/05

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Авторы:
Мин Павел Георгиевич Крамер Вадим Владимирович Сидоров Виктор Васильевич
Все (4)
Номер заявки
2018133352
Дата подачи заявки
20.09.2018
Опубликовано
23.04.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Реферат

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%: углерод 0,10-0,20, хром 21,5-23,5, кобальт 18,0-20,0, титан 3,0-4,5, вольфрам 1,0-3,0, алюминий 1,0-3,0, тантал 0,8-2,5, цирконий до 0,15, бор до 0,020, ниобий 0,5-1,5, лантан до 0,20, барий до 0,10, никель - остальное. Сплав характеризуется высокими значениями длительной прочности, сульфидно-оксидной и хлоридной коррозионной стойкости, а также технологичностью и структурной стабильностью при температуре 850°С. 2 н. и 1 з.п. ф-лы, 2 табл., 7 пр.

Формула изобретения

1. Жаропрочный литейный сплав на основе никеля, содержащий углерод, хром, кобальт, титан, вольфрам, алюминий, тантал, цирконий, бор и ниобий, отличающийся тем, что он дополнительно содержит лантан и барий при следующем соотношении компонентов, мас.%:

углерод0,10-0,20
хром21,5-23,5
кобальт18,0-20,0
титан3,0-4,5
вольфрам1,0-3,0
алюминий1,0-3,0
тантал0,8-2,5
цирконийдо 0,15
бордо 0,020
ниобий0,5-1,5
лантандо 0,20
барийдо 0,10
никельостальное

2. Сплав по п. 1, отличающийся тем, что суммарное содержание алюминия и титана составляет 4,9-6,0 мас.%.

3. Изделие из жаропрочного литейного сплава на основе никеля, отличающееся тем, что оно выполнено из сплава по п. 1.

Описание

[1]

Изобретение относится к металлургии, в частности к коррозионностойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С.

[2]

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %:

[3]

хром15-18
кобальт8-11
молибден0,75-2,2
вольфрам1,8-3,0
ниобий0,5-2,0
тантал1-3
алюминий3-4
углерод0,1-0,2
титан3-4
бор0,01-0,05
цирконий0,01-0,2
никельостальное

[4]

(US 3459545 А, 05.08.1969).

[5]

Сплав имеет недостаточно высокие характеристики длительной прочности при рабочих температурах, а также низкую коррозионную стойкость при эксплуатации в агрессивных средах, содержащих примеси серы и хлора.

[6]

Известен жаропрочный сплав на основе никеля следующего химического состава, масс. %:

[7]

хром9,5-14
кобальт7-11
молибден1,0-2,5
вольфрам3,0-4,0
тантал1,0-4,0
ниобийдо 1,0
алюминий3,0-4,0
титан3,0-5,0
титан и алюминий6,5-8,0
бор0,005-0,05
цирконий0,01-0,25
углерод0,02-0,25
никельостальное

[8]

(US 3619182 А, 09.11.1971).

[9]

Сплав имеет достаточно высокие прочностные и пластические характеристики, но отличается пониженной структурной стабильностью при длительной работе (свыше 500 часов), что связано с выпадением в условиях высокотемпературного воздействия охрупчивающих ТПУ-фаз (σ, μ и др.), которые существенно понижают жаропрочные свойства сплава и ограничивают ресурс работы двигателя.

[10]

Отрицательное влияние ТПУ-фаз на долговременные высокотемпературные свойства жаропрочного сплава проявляется в том, что эти хрупкие фазы игольчатой морфологии являются концентраторами напряжений, на которых зарождаются микротрещины, ведущие к преждевременному разрушению деталей из данного сплава.

[11]

Наиболее близким аналогом является жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок, содержащий, масс. %:

[12]

углерод0,13-0,165
хром22-22,6
кобальт18,5-19,4
титан3,6-3,8
вольфрам1,9-2,2
алюминий1,8-2,1
тантал1,0-1,5
цирконий0,08-0,12
бор0,008-0,012
ниобий0,8-1,2
церий0,01-0,2
никельостальное

[13]

(High Temperature Alloys For Gas Turbines «Program Conference Liege» 04-06 October 1982, pp. 369-393).

[14]

Сплав, взятый за прототип, имеет невысокие характеристики длительной прочности, сульфидно-оксидной и хлоридной стойкости при температурах 800-1000°С, а также пониженную структурную стабильность.

[15]

Таким образом, известные сплавы при рабочих температурах 800-1000°С не обладают оптимальным сочетанием служебных свойств (длительная прочность, сопротивление высокотемпературной коррозии, структурная стабильность в процессе эксплуатации), а также технологичностью при отливке деталей.

[16]

Задачей предложенного изобретения является разработка структурно-стабильного литейного жаропрочного сплава на основе никеля с улучшенными служебными свойствами.

[17]

Техническим результатом предложенного изобретения является повышение длительной прочности, сульфидно-оксидной и хлоридной коррозионной стойкости и структурной стабильности сплава при температуре 850°С, а также его технологичности.

[18]

Для достижения технического результата предложен литейный жаропрочный сплав на основе никеля, содержащий углерод, хром, кобальт, титан, вольфрам, алюминий, тантал, цирконий, бор, ниобий, лантан, барий при следующем соотношении компонентов, масс. %:

[19]

углерод0,10-0,20
хром21,5-23,5
кобальт18,0-20,0
титан3,0-4,5
вольфрам1,0-3,0
алюминий1,0-3,0
тантал0,8-2,5
цирконийдо 0,15
бордо 0,020
ниобий0,5-1,5
лантандо 0,20
барийдо 0,10
никельостальное.

[20]

Предпочтительное суммарное содержание алюминия и титана в сплаве составляет 4,9-6,0 масс. %.

[21]

Также предложено изделие, выполненное из данного сплава.

[22]

По сравнению со сплавом-прототипом в предлагаемом сплаве вместо церия введен лантан. Лантан обладает наибольшей величиной атомного и ковалентного радиусов среди лантаноидов, благодаря чему он более надежно блокирует вакантные места в кристаллической решетке сплава и тем самым замедляет диффузионные процессы в условиях высокотемпературной ползучести. За счет замедления скорости разупрочнения сплава повышается его длительная прочность и структурная стабильность.

[23]

Было установлено, что введение в сплав лантана (вместо церия) более эффективно для понижения скорости высокотемпературной сульфидно-оксидной и хлоридной коррозии за счет ослабления скорости диффузионных потоков ионов серы, хлора и кислорода через поверхность раздела металл-оксидная пленка.

[24]

Давление пара лантана при температуре 1600°С почти в 2 раза ниже, чем у церия (0,88 и 1,6 Па соответственно), т.е. в условиях плавки сплава в вакууме лантан будет удаляться из расплава в 2 раза медленнее и тем самым он более продолжительное время будет находиться в расплаве и эффективно положительно влиять на весь комплекс свойств сплава.

[25]

Барий, в отличие от других щелочноземельных металлов - кальция и магния, имеет более низкое давление пара при температурах плавки, что позволяет эффективно его использовать для раскисления расплава перед присадкой лантана и тем самым стабилизировать его усвоение.

[26]

Таким образом, введение бария и лантана повышает технологичность данного сплава.

[27]

Ограничение суммарного содержания алюминия и титана в диапазоне 4,9-6,0 масс. % обеспечивает хорошую свариваемость сплава и дополнительно повышает его жаропрочность за счет формирования необходимого количества упрочняющей γ'-фазы.

[28]

Пример осуществления.

[29]

В вакуумной индукционной печи ВИАМ2002 было выплавлено пять плавок предлагаемого сплава и одна плавка сплава, взятого за прототип. Масса каждой плавки составляла 10 кг. Все плавки были переплавлены в плавильно-заливочной установке УППФ-У и отлиты блоки с заготовками под образцы с равноосной структурой.

[30]

После проведения термической обработки из заготовок были изготовлены образцы для испытаний на длительную прочность, а также образцы для испытаний на сульфидно-оксидную и хлоридную коррозию.

[31]

Химические составы образцов сплавов приведены в таблице 1.

[32]

Испытания на длительную прочность проводили при температуре 850°С и напряжениях 350 и 220 МПа на базе 50-100 часов и 800-1000 часов соответственно. От каждой плавки было испытано по два образца. Результаты испытаний приведены в таблице 2.

[33]

Испытания на коррозию проводили по циклическому режиму. Один цикл испытаний включал:

[34]

- нанесение на горячую поверхность образцов солевой корки водного раствора смеси солей 75% Na2SO4+25% NaCl (для сульфидно-оксидной коррозии) или 3,5% водного раствора NaCl (для хлоридной коррозии);

[35]

- выдержку образцов при Т=850°С в течение 1 часа в нагревательной печи;

[36]

- охлаждение на воздухе.

[37]

Общая продолжительность испытаний - 30 циклов.

[38]

Оценку стойкости образцов к коррозии проводили по удельному изменению (убыли) массы путем взвешивания образцов через каждые 5 циклов.

[39]

На каждый вид испытаний на коррозию было изготовлено по 6 образцов. Усредненные результаты испытаний по 6-и образцам приведены в таблице 2.

[40]

Полученные результаты показывают, что долговечность предлагаемого сплава при испытаниях на длительную прочность при повышенных температурах заметно превосходят свойства сплава - прототипа, т.е. предлагаемый сплав отличается более высоким уровнем длительной прочности, при этом соблюдение суммарного содержания алюминия и титана в диапазоне 4,9-6,0 масс. % (примеры 1-5) дополнительно повышает его жаростойкость: время до разрушения при испытании на длительную прочность увеличилось на 5-20 часов при Т=850°С, σ=350 МПа, и на 30-180 часов при Т=850°С, σ=220 МПа.

[41]

Предлагаемый сплав обладает высокой коррозионной стойкостью при температуре испытаний 850°С. Как видно из таблицы 2, удельное изменение (убыль) массы образцов как при сульфидно-оксидной, так и при хлоридной коррозии в 1,5-2 раза меньше, чем у сплава-прототипа.

[42]

При проведении контроля качества литых деталей из предлагаемого сплава микропористость в них практически отсутствует, что свидетельствует о высокой технологичности сплава.

[43]

После проведения испытаний на длительную прочность при температуре 850°С и напряжении 220 МПа на базе 800-1000 часов была исследована микроструктура разрушенных образцов. Металлографический анализ подтвердил отсутствие охрупчивающих ТПУ-фаз (σ, μ и др.), что свидетельствует о высокой фазовой и структурной стабильности предлагаемого сплава.

[44]

Таким образом, предлагаемый сплав существенно превосходит известный сплав по длительной прочности, а также по высокотемпературной коррозионной стойкости. Сплав обладает структурно-фазовой стабильностью при эксплуатации, что позволяет повысить ресурс работы и надежность изделий газотурбинных двигателей и установок, длительно работающих в агрессивных средах при повышенных температурах и напряжениях.

[45]

[46]

* элементы в сплаве присутствуют, но в меньшем количестве, нежели предел чувствительности метода определения концентрации компонентов (менее 0,00005 масс. %)

[47]

Как компенсировать расходы
на инновационную разработку
Похожие патенты