патент
№ RU 2624268
МПК G01S19/01

Способ определения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем

Авторы:
Нестеров Олег Валерьянович
Номер заявки
2016135147
Дата подачи заявки
30.08.2016
Опубликовано
03.07.2017
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС – ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых осуществляется измерение псевдодальности до навигационных спутников по фазе несущих колебаний. Достигаемый технический результат – повышение точности и надежности определения взаимного положения объектов при сокращении времени соответствующих вычислений. Указанный результат достигается за счет того, что в дифференциальных системах точное определение взаимного положения объектов производится по разностям псевдофазовых измерений, получаемых в разнесенных на местности навигационных приемниках. 2 ил.

Формула изобретения

Способ определения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем, заключающийся:

в приеме сигналов от двух или одной спутниковых группировок на две разнесенные приемные антенны, относительные координаты фазовых центров которых образует вектор базисной линии;

измерении в первом и втором приемниках псевдодальностей по коду и полных псевдофаз и соответственно («сырые» измерения);

нахождении по кодовым измерениям псевдодальностей в геоцентрической системе координат приближенных значений координат первой приемной антенны {, }, второй приемной антенны {, } и параметров, определяющих расхождения временных шкал первого и второго приемников от системного времени спутниковых группировок GPS ( и ) и ГЛОНАСС ( и ), а также поправок на запаздывание сигнала в атмосфере;

задании в геоцентрической системе координат вектора базисной линии, начало которого находится в точке {, }, а конец – в области Q с центром в точке {, }, размеры которой определяются суммарными погрешностями вычислений координат первой и второй приемных антенн по кодовым измерениям;

формировании первых разностей измеренных первым и вторым приемниками псевдофаз с учетом внесения поправок на запаздывание сигналов в тропосфере, ионосфере, известных аппаратурных задержек, включая калибровочные поправки межлитерных задержек ГЛОНАСС:

, (1)

где для спутников GPS , а для спутников ГЛОНАСС – ,

– дальности между фазовым центром передающей антенны j-ого спутника в момент излучения навигационного сигнала и фазовыми центрами соответственно первой и второй приемной антенны в моменты приема ими этого сигнала (по шкале спутниковой группировки),

и – частоты принимаемого приемниками 1 и 2 сигнала j-ого спутника (с учетом доплеровского смещения частоты),

– номинальная частота сигнала, излучаемого j-м спутником (для ГЛОНАСС – частота сигнала нулевого литера),

– расхождение временных шкал первого и второго приемников (в трактах GPS , в трактах ГЛОНАСС ),

– разность начальных фаз в трактах опорных генераторов первого и второго приемников (в трактах GPS , в трактах ГЛОНАСС –

– неизвестные целые числа, равные разности целых чисел циклов фаз сигналов опорных генераторов в счетчиках измерения полной фазы приемников 1 и 2, определяющих их начальное состояние на момент измерения,

– разность погрешностей псевдофазовых измерений в приемниках за счет ошибок многолучевости, шумов, нескомпенсированных задержек в атмосфере;

составлении системы уравнений, связывающих измеренные значения разности псевдофаз (1) с искомыми смещениями координат конца вектора базисной линии от приближенных значений этих координат
{, }, найденных по кодовым измерениям, для чего в выражение (1) подставляют

, (2)

, (3)

где , – координаты j-го спутника в момент излучения навигационного сигнала;

отличающийся тем, что измеренные разности псевдофаз (в метрах) выражают через значения дальностей и оценки дальностей , при этом вычисляют по формуле (3) для координат антенны 2 в момент приема навигационных сигналов (по шкале времени приемника 2) и координат j-го спутника на момент излучения им соответствующего сигнала (предшествующего ), а оценку находят по формуле (2) для координат антенны (1) в момент приема сигналов (по шкале времени приемника 1) и координат j-го спутника на время, смещенное на величину от момента излучения им соответствующего сигнала (предшествующего ):

, (4)

где – разность псевдофаз в метрах, (5)

, – коэффициенты, характеризующие использование спутниковых группировок GPS и ГЛОНАСС в системе уравнений (4), а именно

, =,

– неизвестные целые числа,

– подлежащие оценке дробные части разности начальных фаз на несущей частоте GPS и нулевом литере частоты ГЛОНАСС,

– длина волны несущего сигнала GPS,

– длина волны нулевого литера несущего сигнала ГЛОНАСС;

для нахождения смещений в области Q параллельно координатным осям проводят плоскости с интервалами , начиная от {, }, точки пересечения которых образуют узлы с координатами , где – номера узлов по осям x, y, z;

вычисляют вероятность нахождения искомых координат первой антенны в окрестностях указанных узлов при условии, что значения первых разностей псевдофаз равны , для чего представляют текущие оценки смещения координат на l-м шаге поиска при r-м вычислении поправок в виде

; ; ,

где – номер узла (шага поиска),

– номер вычисляемой поправки на l-ом шаге поиска (для r=1 );

с учетом (4), используя линеаризацию выражения (2) в точке {, составляют систему линейных уравнений вида

(6)

– оценка дальности от j-го спутника до антенны 1, вычисленная по кодовым измерениям,

где – величины, обратные по знаку направляющим косинусам из точки { на j –й спутник,

– неизвестные целые числа циклов фазы при оценке смещений координат для j-го канала GPS или ГЛОНАСС на l-м шаге поиска при r-м вычислении поправок,

– определяемые на l-м шаге для r-й поправки дробные части оценки начальных фаз на несущей частоте GPS и нулевом литере частоты ГЛОНАСС (для полагаем ),

– взаимные разности (выраженные в метрах) между оценками разностей псевдофаз , вычисленными для найденных координат первой приемной антенны на l-м шаге поиска для -й поправки, и измеренными (определенными по формуле (5)) значениями ;

находят оценку разностей псевдофаз, соответствующих координатам первой приемной антенны в l-узле при , по формуле

; (7)

формируют с учетом (7) систему уравнений (6) для l-го узла при , удаляя из и целое число длин волн (циклов фазы):

(8)

где – означает операцию удаления из целого числа (оставление дробной части) путем вычитания ближайшего целого числа;

решают систему уравнений (8) методом наименьших квадратов (МНК), находя ;

подставляют найденные решения в систему уравнений (6), переходя к вычислению следующей () поправки, и аналогичным образом находят поправки и параметры ;

проверяют выполнение условий

, , ,

если все они выполняются, то считают поиск смещений координат первой приемной антенны на l-м шаге завершенным, если нет, то переходят к вычислению следующей () поправки;

обозначают соответствующие найденным на l-м шаге поправкам смещения координат и параметры и вводят вектор невязок следующим образом:

, – для измерений GPS,

, – для измерений ГЛОНАСС,

где находят по формуле (6) при и
;

вычисляют среднеквадратическое отклонение невязок на l-м шаге

,

и сравнивают его с априорно заданным порогом : если , то принимают найденные на l-м шаге поиска координаты первой приемной антенны за искомые, в противном случае переходят к -му шагу,

если для всех шагов поиска , то за искомые координаты первой приемной антенны принимают координаты, определенные на том шаге поиска , для которого СКО невязок будет минимальным;

вычисляют для найденных на -м шаге поиска координат первой приемной антенны координаты вектора базисной линии: , , , определяющие взаимное положение объектов.

Описание

[1]

Изобретение относится к области дифференциальных навигационных систем и применимо для высокоточной навигации, геодезии, ориентации объектов в пространстве по сигналам глобальных навигационных спутниковых систем (ГНСС – ГЛОНАСС, GPS, Galileo, Bei Dou и другие), в которых используются измерения фазы несущих колебаний. В дифференциальных системах точное определение взаимного положения объектов производится по разностям псевдофазовых измерений, получаемых в разнесенных на местности навигационных приемниках.

[2]

Основной проблемой использования фазовых измерений является неоднозначность этих измерений, связанная с циклической природой фазы. Обычно раскрытие неоднозначности осуществляется по результатам измерений, полученным на нескольких эпохах, т.е. на относительно длительном интервале наблюдений с использованием фильтрации [1-3]. Известны также способы раскрытия неоднозначности фазовых измерений, относящихся к одной эпохе, на основе минимума среднеквадратической погрешности места определения, метода наименьших квадратов и функций неоднозначности, являющихся частным случаем метода максимального правдоподобия [1, 4-8].

[3]

Все известные [1-8] способы раскрытия неоднозначности основаны на нахождении целого числа циклов, содержащихся в разностях псевдофазовых измерений, формируемых для каждого спутника. Для повышения точности позиционирования и вероятности правильного раскрытия неоднозначности желательно увеличивать используемое количество спутников, т.е. увеличивать число измерений. Однако каждое новое неоднозначное измерение может характеризоваться своим неопределенным числом и поэтому увеличение числа измерений приводит к росту числа переменных, которые необходимо оценивать при обработке [1].

[4]

Предлагаемый способ позволяет определять взаимное положение объектов по неоднозначным фазовым измерениям, полученным для одной эпохи, без непосредственного вычисления целого числа циклов, содержащихся в первых разностях псевдофазовых измерений, и без использования вторых разностей. Он применим также при одновременном использовании нескольких различных ГНСС, например ГЛОНАСС и GPS.

[5]

Техническим результатом изобретения является повышение точности и надежности определения взаимного положения объектов при сокращении времени вычислений.

[6]

Взаимное положение объектов определяется вектором базисной линии, т.е. в рассматриваемых системах, пространственными координатами линии, на концах которой находятся фазовые центры антенн, принимающих сигналы навигационных спутников.

[7]

Технический результат достигается тем, что Способ определения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем, заключается:

[8]

в приеме сигналов от двух или одной спутниковых группировок на две разнесенные приемные антенны, относительные координаты фазовых центров которых образует вектор базисной линии;

[9]

измерении в первом и втором приемниках псевдодальностей по коду и полных псевдофаз и соответственно («сырые» измерения)[Примечание: Полную псевдофазу иногда образуют [3] добавлением к целой части кодовой псевдодальности (выраженной в длинах волн) дробной части измеренной в циклах псевдофазы.];

[10]

нахождении по кодовым измерениям псевдодальностей в геоцентрической системе координат приближенных значений координат первой приемной антенны {, }, второй приемной антенны
{, } и параметров, определяющих расхождения временных шкал первого и второго приемников от системного времени спутниковых группировок GPS ( и ) и ГЛОНАСС ( и ), а также поправок на запаздывание сигнала в атмосфере;

[11]

задании в геоцентрической системе координат вектора базисной линии, начало которого находится в точке {, }, а конец – в области Q с центром в точке {, }, размеры которой определяются суммарными погрешностями вычислений координат первой и второй приемных антенн по кодовым измерениям;

[12]

формировании первых разностей измеренных первым и вторым приемниками псевдофаз с учетом внесения поправок на запаздывание сигналов в тропосфере, ионосфере, известных аппаратурных задержек, включая калибровочные поправки межлитерных задержек ГЛОНАСС, и т.п.:

[13]

, (1)

[14]

где для спутников GPS , а для спутников ГЛОНАСС – ,

[15]

– дальности между фазовым центром передающей антенны j-го спутника в момент излучения навигационного сигнала и фазовыми центрами соответственно первой и второй приемной антенны в моменты приема ими этого сигнала (по шкале спутниковой группировки),

[16]

и – частоты принимаемого приемниками 1 и 2 сигнала j-го спутника (с учетом доплеровского смещения частоты),

[17]

– номинальная частота сигнала, излучаемого j-м спутником (для ГЛОНАСС – частота сигнала нулевого литера),

[18]

– расхождение временных шкал первого и второго приемников (в трактах GPS , в трактах ГЛОНАСС ),

[19]

– разность начальных фаз в трактах опорных генераторов первого и второго приемников (в трактах GPS , в трактах ГЛОНАСС –

[20]

– неизвестные целые числа, равные разности целых чисел циклов фаз сигналов опорных генераторов в счетчиках измерения полной фазы приемников 1 и 2, определяющих их начальное состояние на момент измерения [3],

[21]

– разность погрешностей псевдофазовых измерений в приемниках за счет ошибок многолучевости, шумов, нескомпенсированных задержек в атмосфере и т.п.;

[22]

составлении системы уравнений, связывающих измеренные значения разности псевдофаз (1) с искомыми смещениями координат конца вектора базисной линии от приближенных значений этих координат
{, }, найденных по кодовым измерениям, для чего в выражение (1) подставляют

[23]

, (2)

[24]

, (3)

[25]

где , – координаты j-го спутника в момент излучения навигационного сигнала;

[26]

отличающейся тем, что измеренные разности псевдофаз (в метрах) выражают через значения дальностей и оценки дальностей , при этом вычисляют по формуле (3) для координат антенны 2 в момент приема навигационных сигналов (по шкале времени приемника 2) и координат j-го спутника на момент излучения им соответствующего сигнала (предшествующего ), а оценку находят по формуле (2) для координат антенны (1) в момент приема сигналов (по шкале времени приемника 1) и координат j-го спутника на время, смещенное на величину от момента излучения им соответствующего сигнала (предшествующего ):

[27]

, (4)

[28]

где – разность псевдофаз в метрах, (5)

[29]

, – коэффициенты, характеризующие использование спутниковых группировок GPS и ГЛОНАСС в системе уравнений (4), а именно

[30]

, =,

[31]

– неизвестные целые числа,

[32]

– подлежащие оценке дробные части разности начальных фаз на несущей частоте GPS и нулевом литере частоты ГЛОНАСС,

[33]

– длина волны несущего сигнала GPS,

[34]

– длина волны нулевого литера несущего сигнала ГЛОНАСС;[ Примечание: В формуле (4) первое слагаемое равно разности дальностей в результате пространственного разнесения антенн приемников 1 и 2, а второе (для GPS) и третье (для ГЛОНАСС) слагаемые связаны только с расхождением временных шкал приемников.]

[35]

для нахождения смещений в области Q параллельно координатным осям проводят плоскости с интервалами , начиная от {, }, точки пересечения которых образуют узлы с координатами , где – номера узлов по осям x, y, z;

[36]

согласно выбранной стратегии поиска вычисляют вероятность нахождения искомых координат первой антенны в окрестностях указанных узлов при условии, что значение первых разностей псевдофаз равны (по сути это соответствует построению многомодальной функции правдоподобия в трехмерном пространстве, заданном координатами антенны 1, при этом параметры и подлежат определению для каждого шага поиска), для чего представляют текущие оценки смещения координат на l-м шаге поиска при r-м вычислении поправок в виде

[37]

; ; ,

[38]

где – номер узла (шага поиска),

[39]

– номер вычисляемой поправки на l-м шаге поиска (для r=1 );

[40]

с учетом (4), используя линеаризацию выражения (2) в точке {, составляют систему линейных уравнений вида

[41]

[42]

(6)

[43]

– оценка дальности от j-го спутника до антенны 1, вычисленная по кодовым измерениям,

[44]

где – величины, обратные по знаку направляющим косинусам из точки { на j –ый спутник,

[45]

– неизвестные целые числа циклов фазы при оценке смещений координат для j-го канала GPS или ГЛОНАСС на l-м шаге поиска при r-м вычислении поправок,

[46]

– определяемые на l-м шаге для r-й поправки дробные части оценки начальных фаз на несущей частоте GPS и нулевом литере частоты ГЛОНАСС (для полагаем ),

[47]

– взаимные разности (выраженные в метрах) между оценками разностей псевдофаз , вычисленными для найденных координат первой приемной антенны на l-м шаге поиска для -й поправки, и измеренными (определенными по формуле (5)) значениями ;

[48]

находят оценку разностей псевдофаз, соответствующих координатам первой приемной антенны в l-узле при , по формуле

[49]

; (7)

[50]

формируют с учетом (7) систему уравнений (6) для l-го узла при , удаляя из и целое число длин волн (циклов фазы):

[51]

(8)

[52]

где – означает операцию удаления из целого числа (оставление дробной части) путем вычитания ближайшего целого числа;

[53]

решают систему уравнений (8) методом наименьших квадратов (МНК), находя ;

[54]

подставляют найденные решения в систему уравнений (6), переходя к вычислению следующей () поправки, и аналогичным образом находят поправки и параметры ;

[55]

проверяют выполнение условий

[56]

, , ,

[57]

если все они выполняются, то считают поиск смещений координат первой приемной антенны на l-м шаге завершенным, если нет, то переходят к вычислению следующей () поправки. (Примечание. Если число вычисляемых поправок превышает 4, то продолжение вычислений считается нецелесообразным из-за наличия одного или более аномальных фазовых измерений – требуется отбраковка проведенных измерений);

[58]

обозначают соответствующие найденным на l-м шаге поправкам смещения координат и параметры и вводят вектор невязок следующим образом:

[59]

, – для измерений GPS,

[60]

, – для измерений ГЛОНАСС,

[61]

где находят по формуле (6) при и
;

[62]

вычисляют среднеквадратическое отклонение невязок на l-м шаге

[63]

,

[64]

и сравнивают его с априорно заданным порогом : если , то принимают найденные на l-м шаге поиска координаты первой приемной антенны за искомые, в противном случае – переходят к -му шагу,

[65]

если для всех шагов поиска , то за искомые координаты первой приемной антенны принимают координаты, определенные на том шаге поиска , для которого СКО невязок будет минимальным;

[66]

вычисляют для найденных на -м шаге поиска координат первой приемной антенны координаты вектора базисной линии: , , , определяющие взаимное положение объектов.

[67]

Принципиальным отличием предложенного способа от всех известных является то, что в нем вместо раскрытия неоднозначности фазовых измерений, т.е. нахождения целого числа периодов, содержащихся в первых разностях псевдофаз, производится устранение целочисленной неоднозначности при сохранении дробных частей псевдофаз. При этом поиск (перебор) ведется в соответствии с выбранной стратегией в трехмерном пространстве, в котором находятся искомые координаты. Область и стратегия поиска зависят от качества исходных измерений и динамики объектов. Выбор и оптимизация их выходит за рамки настоящего изобретения.

[68]

Признаки и сущность заявленного изобретения поясняются в последующем детальном описании, иллюстрируемом чертежами.

[69]

На Фиг. 1 представлен пример системы, реализующей способ измерения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем, где

[70]

1. Первая орбитальная группировка навигационных спутников;

[71]

2. Вторая орбитальная группировка навигационных спутников;

[72]

3. Первая приемная антенна;

[73]

4. Вторая приемная антенна;

[74]

5. Первый приемник;

[75]

6. Второй приемник;

[76]

7. Блок вычислений взаимного положения объектов.

[77]

На Фиг. 2 представлен алгоритм работы блока вычислений взаимного положения объектов, где:

[78]

8. Предварительная обработка «сырых» измерений;

[79]

9. Решение навигационной задачи в геоцентрической системе координат (WGS84 или ПЗ-90) по кодовым измерениям для первого приемника;

[80]

10. Решение навигационной задачи в геоцентрической системе координат (WGS84 или ПЗ-90) по кодовым измерениям для второго приемника;

[81]

11. Формирование первых разностей псевдофазовых измерений с учетом оценок значений дальностей до первой и второй приемных антенн от j-го спутника, координаты которого смещены на величины, соответствующие расхождению шкал времени первого и второго приемников;

[82]

12. Формирование текущего смещения координат первой приемной антенны от координат {, } на l-м шаге поиска в окрестности узла (заданного стратегией поиска) для r-й поправки;

[83]

13. Проверка наличия «флага», сформированного в блоке 17;

[84]

14. Смещение на 0,5 цикла фазы разности фазовых измерений в канале ГЛОНАСС на нулевой литерной частоте;

[85]

15. Вычисление взаимных разностей между выраженными в метрах разностями фазовых измерений, рассчитанными для найденных на l-м шаге поиска для -й поправки смещений координат первой приемной антенны и измеренными значениями ;

[86]

16. Анализ величин на наличие целого числа длин волн (только для r=2);

[87]

17. Формирование «флага» при наличии в целого числа длин волн;

[88]

18. Удаление целого числа длин волн (циклов фазы) из и ;

[89]

19. Формирование системы линейных уравнений для r-й поправки на l-м шаге поиска;

[90]

20. Решение МНК сформированной системы уравнений;

[91]

21. Анализ полученных значений поправок координат («меньше порога»?);

[92]

22. Подсчет числа проходов вычисления поправок r на l-м шаге поиска;

[93]

23. Анализ текущего номера поправки (r>4?);

[94]

24. Прекращение поиска;

[95]

25. Введение вектора невязок и вычисление среднеквадратического отклонения (СКО) невязок на l-м шаге поиска;

[96]

26. Анализ СКО невязок («невязки меньше заданного порога»?);

[97]

27. Вычисление базисной линии для координат, найденных на шаге поиска;

[98]

28. Выдача результатов потребителю.

[99]

Способ измерения взаимного положения объектов по сигналам глобальных навигационных спутниковых систем работает следующим образом.

[100]

Первая и вторая приемные антенны (3,4) принимают сигналы от первой и второй орбитальных группировок навигационных спутников (1,2), например ГЛОНАСС и GPS, которые поступают в первый и второй приемники (5,6) и в виде «сырых» измерений (кодовые псевдодальности от всех видимых спутников до первой и второй приемных антенн, псевдофазы, эфемериды спутников, дополнительная информация), передаются в блок вычислений взаимного положения объектов (7), алгоритм которого содержит следующие операции:

[101]

(8) Предварительная обработка «сырых» измерений (8) от первого и второго приемников (5,6), а именно:

[102]

• синхронизация «сырых» измерений от первого и второго приемников (5,6),

[103]

• выбор актуальных одномоментных измерений для первого и второго приемников (5,6),

[104]

• выбор рабочего созвездия из одновременно видимых приемными антеннами (3 и 4) спутников GPS (j = 1, …, nGPS) и ГЛОНАСС (j = nGPS + 1,…, n);

[105]

(9) Решение навигационной задачи в геоцентрической системе координат (WGS84 или ПЗ-90) по кодовым измерениям для первого приемника (5).

[106]

В результате находятся:

[107]

• приближенные значения координат первой приемной антенны (3) {, },

[108]

• расхождение временных шкал первого приемника (5) от системного времени GPS – и ГЛОНАСС – ,

[109]

(10) Решение навигационной задачи в геоцентрической системе координат (WGS84 или ПЗ-90) по кодовым измерениям для второго приемника (6). В результате находятся:

[110]

• приближенные значения координат второй приемной антенны (4) {, },

[111]

• расхождение временных шкал второго приемника (6) от системного времени GPS – и ГЛОНАСС – ,

[112]

(11) Формирование первых разностей псевдофазовых измерений ,
j = 1, …, n с учетом влияния атмосферы, межлитерных задержек для ГЛОНАСС и другой информации, а также оценок значений дальностей и до первой и второй приемных антенн от j-го спутника, координаты которого смещены на величины, соответствующие расхождению шкал времени приемников;

[113]

(12) Формирование текущего смещения координат первой приемной антенны (3) от координат {, } на l-м шаге поиска в окрестности узла (заданного стратегией поиска) для r-й поправки

[114]

, , ,

[115]

где , , – искомые r-ые поправки к координатам узла на l-м шаге поиска (для r=1 );

[116]

(13) Проверка наличия «флага», сформированного в блоке 17 на втором проходе r=2 (при первом проходе «флаг» сброшен);

[117]

(14) Прибавление 0,5 цикла к разности псевдофазовых измерений в канале ГЛОНАСС на нулевой литерной частоте;

[118]

(15) Вычисление взаимных разностей между разностями псевдофазовых измерений, рассчитанными для найденных значений координат первой приемной антенны (3) на l-м шаге поиска для
-й поправки, и измеренными значениями разности псевдофаз

[119]

;

[120]

(16) Анализ величины на наличие целого числа длин волн. Если для r = 2 выполняется неравенство , то требуется смещение фазы на 0,5 цикла в канале ГЛОНАСС (относительно канала GPS);

[121]

(17) Формирование «флага» для выставления в блоке (13);

[122]

(18) Удаление из и целого числа длин волн (циклов фазы), которое производится вычитанием ближайшего целого числа;

[123]

(19) Формирование системы линейных уравнений для r-й поправки на l-м шаге поиска в виде

[124]

, (3)

[125]

где – расстояние от фазового центра передающей антенны j-го спутника до фазового центра первой приемной антенны, вычисленное по кодовым измерениям,

[126]

– величины, обратные по знаку направляющим косинусам из точки {, } на j-й спутник,

[127]

– определяемые на l-м шаге поиска для r-й поправки дробные части оценки разности начальных фаз на несущей частоте GPS и нулевой литере частоты ГЛОНАСС;

[128]

– взаимные разности (выраженные в метрах) между вычисленными значениями дробных частей разностей псевдофазовых измерений для найденных координат первой приемной антенны на l-м шаге поиска для -й поправки и дробными частями измеренных значений ;

[129]

(20) Решение МНК сформированной системы линейных уравнений и нахождение

[130]

, , ;

[131]

(21) Анализ полученных решений сравнением с порогом:

[132]

если , , ,

[133]

то поиск координат первой приемной антенны (3) на l-м шаге завершается и найденные величины обозначаются , , , ;

[134]

если хотя бы одно из неравенств не выполняется, происходит переход к вычислению (r + 1)-й поправки на l шаге поиска;

[135]

(22) Подсчет числа проходов r вычисления поправок на l-м шаге поиска;

[136]

(23) Анализ текущего номера поправки (r>4?);

[137]

(24) Прекращение поиска;

[138]

(25) Введение вектора невязок и вычисление СКО невязок на l-м шаге поиска:

[139]

= , j = 1, …, для измерений GPS,

[140]

= , j = 1, …, для измерений ГЛОНАСС,

[141]

;

[142]

(26) Анализ СКО невязок на l-м шаге поиска (сравнение с априорно заданным порогом )

[143]

(СКО)l < – принять найденные значения координат на шаге поиска как соответствующие искомому значению координат первой приемной антенны;

[144]

в противном случае – переход к (l+1)-му шагу поиска;

[145]

Примечание. Если для всех шагов поиска (СКО)l > , то за искомые координаты первой приемной антенны принимают координаты, соответствующие тому шагу поиска , для которого (СКО)l будет минимальным;

[146]

(27) Вычисление вектора базисной линии для координат, найденных на -м шаге поиска,

[147]

, , ;

[148]

(28) Выдача результатов потребителю.

[149]

Литература

[150]

1. А.А. Поваляев. Спутниковые радионавигационные системы: время, показания часов, формирование измерений и определение относительных координат. Москва, «Радиотехника», 2008, 324 с.

[151]

2. ГЛОНАСС. Принципы построения и функционирования/ Под редакцией А.И. Перова, В.Н. Харисова. Изд.3-е. – М.: Радиотехника, 2005 г., 688 с.

[152]

3. А.Д. Борискин, А.В. Вейцель и др. Аппаратура высокоточного позиционирования по сигналам глобальных навигационных спутниковых систем: приемники-потребители навигационной информации. Под редакцией М.И. Жодзишского. Москва, изд. МАИ-ПРИНТ, 2010 г., 210 с.

[153]

4. Сетевые спутниковые радионавигационные системы. В.С. Шебшаевич, П.П. Дмитриев, Н.В. Иванцевич и др. Под редакцией В.С. Шебшаевича. – М.: Радио и связь, 1993 г., 408 с.

[154]

5. Ю.П. Фатеев. Разрешение фазовой неоднозначности в однобазовой угломерной аппаратуре ГЛОНАСС/GPS. Электронный журнал «Исследовано в России», 792, http://zhurnal.ape/relarn.ru/articles/2004/072.pds.

[155]

6. Патент US 5252982 «Method of precise position determination».

[156]

7. Патент RU 2157547 «Способ разрешения неоднозначности фазовых измерений».

[157]

8. Frank van Graas GNSS Augmentation for High Precision Navigation Services. AGRD-LS-207, FRANCE, 1996 г., 128-141 с.

Как компенсировать расходы
на инновационную разработку
Похожие патенты