патент
№ RU 2619360
МПК G01K7/02

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ ГАЗОВЫХ ПОТОКОВ

Авторы:
Суровикин Сергей Алексеевич Проказин Федор Евгеньевич Демин Андрей Николаевич
Все (9)
Номер заявки
2016115463
Дата подачи заявки
20.04.2016
Опубликовано
15.05.2017
Страна
RU
Дата приоритета
24.06.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Иллюстрации 
1
Реферат

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике. Устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай. Термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары. При этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно. Технический результат - повышение быстродействия устройства при сохранении его механической прочности и устойчивости к газодинамическим нагрузкам от газового потока. 1 ил.

Формула изобретения

Устройство для измерения температуры высокотемпературных газовых потоков, представляющее собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай, отличающееся тем, что термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары, при этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно.

Описание

Изобретение относится к термометрии и может быть использовано для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике.

Известны устройства с высокотемпературными термопарами, способными без возобновления рабочего термоспая обеспечивать с допустимой погрешностью многократные измерения температуры среды до 1500-1600°С, которая обладает высоким механическим воздействием на термопару, если они будут снабжены защитными наконечниками (Данишевский Д.С., Сведе-Швец Н.И. Высокотемпературные термопары, М., Металлургия, 1977, с. 117-120).

Однако известные устройства, хотя и обеспечивают защиту термопары от механических воздействий среды за счет введения защитных наконечников, но обладают невысоким быстродействием, т.к. введение защитных наконечников приводит к снижению теплообмена между термопарой и средой, температура которой подлежит измерению.

Из известных устройств наиболее близким по технической сущности к заявляемому является устройство, описанное в патенте РФ №2117265, МКИ G01K 7/04, 1998 г.

Данное устройство представляет собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с глухим продольным осевым каналом, в котором размещен рабочий спай термопары с защитным керамическим наконечником. Часть цилиндра выполнена выступающей за пределы корпуса. На его поверхности, на расстоянии 0,3-0,4 ее длины от наружного торца цилиндра, выполнена проточка. Конструкция устройства позволяет уменьшить теплоотвод от рабочего спая термопары к водоохлаждаемому корпусу, повысить механическую жесткость металлического блока, находящегося под воздействием высокой температуры и силы тяжести.

Однако анализ прототипа выявляет существенный недостаток, который заключается в низком быстродействии, что обусловлено наличием керамического наконечника с низким коэффициентом теплопередачи от среды к термопаре, массивностью конструкции самой термопары и, соответственно, повышенной теплоемкостью и тепловой инерцией.

Ожидаемым техническим результатом настоящего изобретения является повышение быстродействия устройства для измерения температуры быстропротекающих высокотемпературных процессов в газодинамике.

Сформулированный результат достигается тем, что в устройстве для измерения температуры газовых потоков, представляющем собой металлический блок, выполненный в виде соединенного с корпусом цилиндра с продольным осевым каналом, в котором размещена термопара, представляющая собой металлическую трубку с керамической вставкой, в которой проходят термопарные провода, выступающие на конце термопары за пределы металлической трубки с керамической вставкой и соединенные в рабочий спай, термопарные провода в металлической трубке с керамической вставкой расположены в керамической вставке под углом в 90° по отношению друг к другу по четырем углам вставки максимально близко к месту сопряжения вставки с металлической трубкой термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами и металлической трубкой термопары, при этом выступающие за пределы вставки четыре термопарных провода предварительно скручены в области термоспая и соединены в рабочий спай с помощью лазерной сварки по поверхности термопарных проводов на глубину половины диаметра термопарного провода с соотношением длины термоспая к общей длине выступающих термопарных проводов как 1:3, а точки выхода двух термопарных проводов из вставки по отношению к направлению набегающего газового потока ориентированы продольно.

На фиг. 1 изображен общий вид устройства в разрезе.

Устройство для измерения температуры газовых потоков содержит металлический корпус 1 термопары, термопару 2, включающую металлическую трубку 3, керамическую вставку 4 из специальной керамики с четырьмя каналами для термопарных проводов 5, рабочий спай 6. Устройство для измерения температуры газовых потоков устанавливается в канале для измерения температуры 7 и закрепляется накидной гайкой 8.

Устройство работает следующим образом.

Устройство устанавливается в канале-газоходе 7 с помощью накидной гайки 8 так, что две точки выхода термопарных проводов 5 из керамической вставки 4 и сами указанные термопарные провода ориентированы продольно по отношению к направлению набегающего газового потока. На расстоянии 2/3 длины термопарных проводов 5 и до конца их длины предварительно скрученные четыре термопарных провода 5 свариваются лазерной сваркой с глубиной проварки на половину диаметра термопарного провода. Точки выхода термопарных проводов 5 из керамической вставки 4 расположены максимально близко к месту сопряжения вставки 4 с металлической трубкой 2 термопары при условии соблюдения достаточности электрического сопротивления между термопарными проводами 5 и металлической трубкой 3 термопары 2.

Такое соединение рабочего спая 6 с помощью предварительной скрутки и лазерной сварки на глубину половины диаметра термопарного провода обеспечивает повышенную механическую прочность соединения проводов и надежный электрический контакт при минимальной массе. Так, например, для сплавов из вольфрам-рения (5%) и вольфрам-рения (20%) высокотемпературных термопарных проводов, составляющих высокотемпературную термопару типа ВР5/20, указанное исполнение термоспая позволяет устранить влияние хрупкости проводов и повысить механическую прочность термоспая в целом при минимальной массе термоспая.

Кроме того, конструкция рабочего спая 6 в виде жесткого треугольника из двух термопарных проводов 5, точки вывода которых из вставки 4 ориентированы по отношению к набегающему газовому потоку продольно и расположены на максимально возможном расстоянии друг к другу во вставке 4, обеспечивают максимально жесткую и прочную конструкцию соединения проводов по отношению к динамическому напору набегающего газового потока при минимальной массе рабочего спая. Расположение двух из четырех проводников продольно по отношению к набегающему газовому потоку (когда один из них находится в зоне аэродинамической тени другого) приводит к уменьшению механической нагрузки на рабочий спай, что также приводит к повышению надежности функционирования термопары.

Соединение в рабочем спае 6 четырех термопарных проводов 5 позволяет выполнить две термопары и таким образом осуществить резервирование (двоирование) числа термопар, применяемых в устройстве. При этом часто встречающимся вариантом выполнения сдвоенной термопары является, когда попарное соединение двух термопарных проводов из вольфрам-рения (5%) и вольфрам-рения (20%) осуществляется путем их скрутки на участке посередине их двух отрезков с последующей лазерной сваркой в рабочий спай места скрутки и протяжкой концов проводов через отверстия керамического изолятора 4.

Таким образом, предлагаемое механически и электрически надежное и прочное исполнение термопары обеспечивает минимально возможную массу термопары и, соответственно, минимальную теплоемкость и термическую инерцию, что позволяет достичь максимально возможное быстродействие при сохранении механической и электрической надежности в условиях воздействия скоростного динамического высокотемпературного газового напора.

Проведенные испытания показали повышенные характеристики быстродействия при сохранении механической и электрической надежности в условиях воздействия скоростного динамического высокотемпературного газового напора.

Как компенсировать расходы
на инновационную разработку
Похожие патенты