для стартапов
и инвесторов
Изобретение относится к волоконной оптике, в частности к технологии изготовления кварцевых волоконных световодов с сердцевиной из фоторефрактивного стекла для изготовления волоконных брегговских решеток (ВБР). В способе изготовления фоторефрактивных световодов MCVD для повышения фоточувствительности сердцевину легируют не менее 13 и не более 20 мол. % диоксидом германия и 1-2,2 масс. % фтора, а вытягивание волокна производят при температуре нагрева заготовки 2000-2050°С. Технический результат – повышение фоторефрактивных свойств фторгерманосиликатных волоконных световодов. 3 табл., 3 пр.
Способ изготовления фоторефрактивных световодов, включающий изготовление MCVD методом заготовки на основе кварцевого стекла с сердцевиной, легированной диоксидом германия и 1-2,2 масс. % фтора, и последующее вытягивание волоконных световодов, отличающийся тем, что легирование сердцевины диоксидом германия осуществляют в количестве от 13 до 20 мол. %, а вытягивание волоконных световодов производят при температуре нагрева заготовки 2000-2050°C.
Изобретение относится к волоконной оптике, в частности к технологии изготовления кварцевых волоконных световодов (ВС) с сердцевиной из фоторефрактивного стекла для изготовления волоконных брегговских решеток (ВБР). Одним из наиболее распространенных способов изготовления кварцевых фоторефрактивных ВС является модифицированный метод химического парофазного осаждения (MCVD) стеклообразных слоев оболочки и сердцевины на внутреннюю поверхность трубки из кварцевого стекла с последующим высокотемпературным сжатием трубки в штабик-заготовку. Фоточувствительность световодов обеспечивается повышенным содержанием в сердцевине GeO2 (более 10 мол. %) и восстановительной атмосферой внутри трубки в процессе ее сжатия. Однако такая технология фоторефрактивных ВС имеет ряд недостатков: - в процессе высокотемпературного сжатия заготовки в ее сердцевине образуются пузыри из-за высокого равновесного давления GeO, - повышенное содержание GeO2 в сердцевине одномодовых ВС предопределяет ее малый диаметр, создавая проблемы при стыковке со стандартными световодами, - слабая фоторефрактивность таких ВС создает технологические проблемы при формировании в них брегговских решеток. Для устранения этих недостатков германосиликатных ВС в сердцевину дополнительно вводят бор, а высокотемпературное сжатие заготовки производят в окислительных условиях (Патент US №6229945, опубл. 08.05.2001, МПК: С03С 13/04, С03В 19/14, С03С 4/04). Недостатком этого способа изготовления фоторефрактивных ВС является высокий уровень оптических потерь (более 100 дБ⎪км) на длине волны 1550 нм, соответствующей спектральной области особой прозрачности кварцевого стекла. Такое ослабление излучения обусловлено его поглощением колебаниями атомов В-О в сетке стекла. Наиболее близкий к предлагаемому техническому решению способ изготовления ВС, принятый нами за прототип (Патент US №6993241 «Волоконно-оптические Брегговские решетки», опубл. 13.01.2006, МПК G02B 6/00, С03С 25/62, С03С 13/04), заключается в изготовлении MCVD методом заготовки ВС на основе кварцевого стекла с введением в сердцевину не менее 6 мол. % GeO2 и не менее 0,9 масс. % фтора с последующим вытягиванием волокна. Такой фоторефрактивный световод на длине волны 1550 нм обладает существенно меньшими оптическими потерями по сравнению с ВС, легированным бором. Недостаток этого метода заключается в том, что специфика структурных преобразований фторгерманосиликатного стекла, определяющая его фоторефрактивные свойства, существенно зависит от условий вытягивания волокна. Однако параметры этого процесса не оптимизированы в части выбора состава сердцевины и температуры вытягивания ВС. Задача настоящего изобретения состоит в повышении фоторефрактивных свойств фторгерманосиликатных ВС. Технический результат достигается путем оптимизации состава сердцевины и температуры вытягивания ВС. Поставленная задача решается новым способом, включающем изготовление MCVD методом заготовки на основе кварцевого стекла с сердцевиной, легированной диоксидом германия и 1-2,2 масс. % фтора, в котором, в отличие от прототипа, содержание GeO2 в сердцевине не менее 13 и не более 20 мол. %, а вытягивание волокна производят при нагреве заготовки до 2000-2050°С. При содержании GeO2 в сердцевине менее 13 мол. % увеличиваются оптические потери при изгибе волокна и снижается фоточувствительность ВС, а при содержании более 20 мол. % резко растут оптические потери на малоугловое рассеяние. Введение в стекло сердцевины фтора более 2,2 масс. % невозможно, так как требует создания давления газообразного SiF4 более 1 атм при осаждении слоев фторгерманосиликатного стекла сердцевины. Диапазон температур нагрева заготовки при вытягивании ВС соответствует максимальному фоторефрактивному эффекту. Вытяжка волокна при температуре менее 2000°С приводит к резкому снижению прочности световодов, а превышение верхнего температурного предела существенно снижает их фоторефракцию. Для таких световодов показатель преломления сердцевины зависит от температуры вытягивания, что существенно влияет на длину отсечки высшей моды одномодовых световодов, определяя тем самым необходимость узкого диапазона температур нагрева заготовки при вытягивании волокна. Совокупность изложенных признаков и анализ отличий от прототипа по существующему уровню техники позволяет сделать вывод о «новизне» и «изобретательском уровне» нового способа. Для подтверждения обоснованности нового технического решения изготовлены и испытаны ВС следующим образом. Пример 1. На основе трубки из кварцевого стекла марки F 300 методом MCVD получена заготовка для одномодового ВС в виде стержня длиной 600 мм и диаметром ≈12 мм с сердцевиной диаметром ≈0,5 мм из кварцевого стекла, содержащего 13 мол. % GeO2 и 1 масс. % фтора и окружающей сердцевину изолирующей оболочкой диаметром ≈6 мм, легированной 0,2 масс. % фтора и 1,5 мол. % Р2О5. Содержание фосфора и фтора определяли на сканирующем электронном микроскопе Quanta 200 в комплекте с рентгеновским микроанализатором EDAX. Содержание GeO2 оценивали на основании измерения радиального профиля показателя преломления (ПП) в заготовке, с учетом его уменьшения фтором, используя коэффициенты рефракции - 0.005/масс. % F и 0.0015/мол. % GeO2. Разность ПП сердцевины и оболочки составляла 0.015, при этом фтор по расчетам снижал ПП на 0.005. Из заготовки вытягивали волокно диаметром 125 мкм при 4-х разных температурах со скоростью 60 м/мин и одновременно наносили УФ отверждаемое эпоксиакрилатное покрытие толщиной ≈45 мкм. Запись ВБР производили УФ излучением KrF эксимерной лазерной системы (длина волны излучения ≈248 нм) Optosystems CL-7550 с использованием интерферометра Тальбота. При формировании решетки длиной 5 мм плотность энергии импульса на световод составляла 70 мДж/см2, частота следования ≈10 Гц, время экспозиции одна минута. Результаты измерений, представленные в Таблице 1, свидетельствуют о том, что температура вытягивания одномодовых ВС существенно влияет на эффективность записи ВБР, которая оценивается количественно коэффициентом отражения в процентах на длине волны 1550 нм. Пример 2. Заготовки световодов изготовлены в соответствии с описанием примера 1, но отличались содержанием фтора и GeO2 в сердцевине, а также и ее диаметром, определяющим одномодовый режим распространения излучения на длине волны 1550 нм. Разность ПП сердцевины и оболочки была на уровне 0,023. Световоды вытягивали при оптимальной температуре, равной 2000°С. Результаты измерения коэффициентов отражения ВБР, свидетельствует о том, что повышение содержания фтора и германия в сердцевине ВС по сравнению с примером №1 приводит к усилению фоточувствительности стекла (Таблица 2). Пример 3 выполнен в качестве контрольного эксперимента. Заготовки ВС изготовлены в соответствии с описанием примера 1, но отличались содержанием фтора и GeO2 в сердцевине и ее диаметром, определяющим одномодовый режим распространения излучения на длине волны 1550 нм. Световоды вытягивали при оптимальной температуре, равной 2000°С. Результаты по измерению коэффициентов отражения ВБР, свидетельствует о том, что снижение содержания фтора и германия в сердцевине ВС по сравнению с примером 1 приводит к ослаблению фоточувствительности стекла (Таблица 3). Изложенные сведения подтверждают очевидную промышленную применимость способа изготовления кварцевых фоторефрактивных волоконных световодов с достижением заявленного технического результата.