патент
№ RU 2685905
МПК C23C24/08
Номер заявки
2017142183
Дата подачи заявки
05.12.2017
Опубликовано
23.04.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к области получения жаростойких материалов и может быть использовано для нанесения высокотемпературных антиокислительных защитных покрытий на особожаропрочные конструкционные материалы (углерод-углеродные и углерод-керамические композиционные материалы, углеграфитовые материалы, сплавы на основе Nb, Мо, W), широко применяемые в авиакосмической, ракетной и других отраслях промышленности. Предлагаемый материал для жаростойкого защитного покрытия содержит, мас.%: титан 35,0-40,0, молибден 8,0-10,0, бор 8,0-10,0, кальций 1,5-3,0, по меньшей мере один элемент из группы редкоземельных металлов (РЗМ) 0,2-0,8, кремний - остальное. Материал имеет гетерофазную структуру, представленную преимущественно диборидом титана (ТiВ), дисилицидом титана и молибдена переменного состава (ТiMoSi, 0,1<х<0,87), дисилицидами титана, молибдена и кальция (ТiSi, МoSi, СаSi) и несвязанным в химические соединения кремнием (Si). Обеспечивается повышение температурно-временных интервалов работоспособности жаростойких покрытий в скоростных высокоэнтальпийных потоках кислородсодержащих газов при температурах на поверхности Т≥1800°С с одновременным сохранением их каталитической активности на уровне K=2-5 м/с. 3 з.п. ф-лы, 3 ил., 2 табл.

Формула изобретения

1. Материал для жаростойкого защитного покрытия, включающий титан, молибден, бор, кремний, отличающийся тем, что он дополнительно содержит кальций и по меньшей мере один элемент из группы редкоземельных металлов (РЗМ), включающей скандий, иттрий, лантан и лантаноиды с атомными номерами от 58 до 71, при следующем соотношении компонентов, мас.%: титан 35,0-40,0, молибден 8,0-10,0, бор 8,0-10,0, кальций 1,5-3,0, по меньшей мере один элемент из группы РЗМ 0,2-0,8, кремний - остальное.

2. Материал по п. 1, отличающийся тем, что он имеет гетерофазную структуру, представленную преимущественно следующими фазами: диборидом титана (TiB2), дисилицидом титана и молибдена переменного состава (TixMo1-xSi2, 0,1<х<0,87), дисилицидами титана, молибдена и кальция (TiSi2, MoSi2, CaSi2) и несвязанным в химические соединения кремнием (Si).

3. Материал по п. 1, отличающийся тем, что он предназначен для нанесения на изделия из углерод-углеродного композиционного материала, углерод-керамического композиционного материала, углеграфитового материала, сплава на основе ниобия, молибдена или вольфрама.

4. Материал по п. 1, отличающийся тем, что он предназначен для наслоенного нанесения методом шликерно-обжигового наплавления или газотермического напыления.

Описание

[1]

Изобретение относится к области получения жаростойких материалов и может быть использовано для нанесения высокотемпературных антиокислительных защитных покрытий на изделия из углерод-углеродного композиционного материала, углерод-керамического композиционного материала, углеграфитового материала, сплава на основе ниобия (Nb), молибдена (Мо) или вольфрама (W), широко применяемых в авиакосмической, ракетной и других отраслях промышленности.

[2]

Традиционная модель жаростойких покрытий строится на использовании в их структуре стеклофазы [RU 2069208 С1, 20.11.1996; RU 2253638 С1, 10.06.2005; RU 2290371 С1, 27.12.2006; RU 2506251 С2, 10.02.2014] или неокисленных компонентов, способных к стеклообразованию в процессе эксплуатации [RU 2002722 С1, 15.11.1993; RU 2178958 С2, 27.01.2002; US 7951459 В2, 31.05.2011; US 8980434 В2, 17.03.2015]. В условиях статической газовой среды или низких характеристик конвективных потоков окислительного газа стеклофаза капсулирует защищаемый материал и залечивает микродефекты, образующиеся в процессе эксплуатации, обеспечивая работоспособность композиции вплоть до исчерпания номинального запаса стеклофазы или неокисленных компонентов.

[3]

В скоростных высокоэнтальпийных потоках кислородсодержащих газов усиливаются локальная газовая коррозия и избирательное окисление отдельных компонентов покрытий, имеет место более интенсивное развитие микрорельефа поверхности в виде шероховатостей, коррозионно-эрозионных питтингов, каверн, что, в свою очередь, увеличивает турбулентность газа в приграничных областях и эрозионное разрушение покрытий. Интенсивные процессы диссоциации и ионизации молекул газа приводят к резкому увеличению их окислительной способности, а, соответственно, и к значительному росту тепловых эффектов химических реакций окисления. Значительный вклад в химическую составляющую аэродинамического нагрева вносит также каталитическая активность покрытий, характеризующая эффективность прохождения экзотермических реакций гетерогенной рекомбинации атомов и ионов потока на активных центрах поверхности. Рост температур приводит к испарению, уносу оксидных пленок, срывным деградациям покрытий с переходом в режим либо самоподдерживающегося горения (характерного, например, для сплавов на основе Nb), либо интенсивной сублимации (типичной для углеродсодержащих материалов, сплавов на основе Мо и W) защищаемого материала. Особо остро проблемы наблюдаются в зонах образования и интерференции поверхностей разрыва (ударных волн, скачков уплотнений) газового потока - на кромках оперения и воздухозаборников, носовых

[4]

обтекателях, аэродинамических рулях и др. элементах планера высокоскоростных летательных аппаратов и их двигательных установок.

[5]

В этих условиях температурный предел защитного действия традиционных покрытий, как правило, не превышает 1600÷1750°С [Astapov A.N., Terent'eva V.S. Review of domestic designs in the field of protecting carbonaceous materials against gas corrosion and erosion in highspeed plasma fluxes // Russian Journal of Non-Ferrous Metals. 2016. Vol. 57, №2. Pp. 157-173. DOI: 10.3103/S1067821216020048]. Повышение функциональных и эксплуатационных характеристик жаростойких покрытий, а вместе с этим, и расширение температурно-временных интервалов работоспособности жаропрочных материалов является сверх актуальной задачей.

[6]

Особое внимание в настоящее время уделяется разработке составов и способов получения жаростойких покрытий, в качестве основных компонентов которых выступают либо сверхтугоплавкие бориды переходных металлов (в первую очередь, ZrB2, НfВ2, TiB2) с добавлением карбидов (SiC, ZrC, HfC, TiC, TaC), силицидов (MoSi2, TiSi2, ZrSi2, TaSi2) и нитридов (HfN, ZrN, TiN), либо тугоплавкие оксиды (НfO2, ZrO2) или более сложные синтетические композиции на основе оксидной керамики.

[7]

Достаточно эффективным средством защиты углеродсодержащих материалов от окисления является способ формирования жаростойкого покрытия системы HfB2 - SiC - Si [RU 2082694 C1, 27.06.1997], включающий нанесение тугоплавкой композиции по шликерной технологии и последующее силицирование из газовой фазы. Наполнителем в шликерной суспензии служит порошок HfB2 (95,0 мас. %) с добавками С (5,0 мас. %) в виде сажи, кокса, искусственного графита, а связующим - 5%-ный водный раствор карбоксиметилцеллюлозы. Термообработка проводится в парах кремния в течение 1÷3 ч при температуре 1850+50°С и остаточном давлении в вакуумной камере P0≤1,3 кПа. Защитная способность обеспечивается образованием на поверхности при высокотемпературном окислении сложных тугоплавких боросиликатных гафнийсодержащих стекол.

[8]

К существенным недостаткам изобретения следует отнести резкое увеличение каталитической активности с одновременным снижением степени черноты покрытия в условиях взаимодействия со скоростными высокоэнтальпийными потоками воздуха при температурах на поверхности Tw>1750°С. Следствием этого является мгновенный неконтролируемый разогрев конструкционной стенки свыше допустимых значений (вплоть до Tw ~ 2400÷2500°С). К тому же, в результате осуществления заявленного способа получают диффузионное покрытие на конкретной защищаемой подложке, а не материал, который может быть использован как исходный для наслоенного нанесения покрытий на изделия из

[9]

широкой гаммы жаропрочных материалов методами шликерно-обжигового наплавления или газотермического напыления.

[10]

Известно высокотемпературное антиокислительное покрытие [RU 2601676 С1, 10.11.2016], предназначенное для защиты керамических композиционных материалов на основе SiC. Покрытие включает, мас. %: оксид циркония 24÷33, оксид гафния 18÷24, оксид иттрия 10÷18, диборид гафния 10÷20, карбид кремния - остальное. Покрытие получают шликерно-обжиговым методом. Шликерную композицию наносят на поверхность защищаемого материала, предпочтительно распылением, сушат при 50÷120°С и обжигают при 1550÷1600°С в течение не менее 1 часа (среда проведения обжига - не указана). Операции повторяют до получения покрытия толщиной 130÷170 мкм.

[11]

Согласно патенту покрытие обеспечивает эффективную защиту от окисления указанных материалов в атмосфере спокойного воздуха при температуре 1750°С в течение не менее 500 ч (с итоговой убылью массы образцов менее 3%) и сохраняет свою работоспособность в условиях взаимодействия с высокоэнтальпийными потоками воздушной плазмы при Tw=1950°С в течение не менее 600 с (с убылью массы образцов не более 3%).

[12]

Однако сами авторы в более поздней публикации [Каблов Е.Н., Жесткое Б.Е., Гращенков Д.В. и др. Исследование окислительной стойкости высокотемпературного покрытия на SiC-материале под воздействием высокоэнтальпийного потока // Теплофизика высоких температур. 2017. Т. 55, №6. С.704-711. DOI: 10.7868/S0040364417060059] указывают на то, что в процессе огневых газодинамических испытаний образцов с рассматриваемым покрытием в потоках воздушной плазмы при Tw ~ 2000 К (1727°С) наблюдается резкое неконтролируемое повышение температур лицевых поверхностей на 600÷1000 градусов. Данный эффект связан с увеличением тепловых потоков к образцам (в 3÷5 раз) в результате повышения каталитической активности поверхности покрытия (константа скорости гетерогенной рекомбинации атомов Кw увеличивается на порядок - от 2 до 23 м/с). Отмеченные изменения объясняются испарением с поверхности низкокаталитичного слоя боросиликатного стекла и оголением высококаталитичных и малотеплопроводных оксидов НfO2 и ZrO2. Это сводит к минимуму надежность покрытия по данному изобретению, особенно в условиях эксплуатации, когда велика вероятность кратковременных забросов температур выше расчетных значений.

[13]

В другом известном изобретении [CN 105695917 А, 22.06.2016] запатентованы состав и способ получения высокотемпературного теплоотражающего покрытия, включающего, об. %: диборид титана ТiB2 90÷50 и дисилицид молибдена MoSi2 10÷50. Покрытие получают с использованием технологии вакуумного плазменного напыления порошковых композиций,

[14]

представляющих собой механические смеси порошков исходных компонентов дисперсностью от 5 до 80 мкм. Рекомендуемая толщина наносимых покрытий составляет 40÷200 мкм.

[15]

Согласно патенту покрытие обладает высокой устойчивостью к абляции в агрессивных потоках кислородсодержащих газов. Представлены положительные результаты 5-, 10- и 15-ти минутных испытаний образцов с покрытиями в плазменном потоке, генерируемом на установке для атмосферного плазменного напыления. Конкретные данные по температурам, достигнутым в процессе испытаний на поверхности образцов, в патенте отсутствуют. Сообщается лишь, что температура в пламени потока составляла 2200°С. Недостатком данного изобретения, как и двух предыдущих, является неудовлетворительная работоспособность покрытий при температурах на их поверхности Tw>1750°С вследствие интенсификации процессов испарения низкокаталитичного боросиликатного стекла и оголения высококаталитичного оксидного слоя на основе TiO2.

[16]

Наиболее близким аналогом, взятым за прототип предлагаемого изобретения, является состав жаростойкого материала, указанный во втором варианте способа защиты жаропрочных материалов от воздействия агрессивных сред высокоскоростных газовых потоков [RU 2082824 С1, 27.06.1997]. Данный материал включает, мас. %: титан 15,0÷40,0, молибден 5,0÷30,0, иттрий 0,1÷1,5, бор 0,5÷2,5, кремний - остальное. Покрытия, формируемые из указанного материала, обеспечивают надежную защиту от высокотемпературной (вплоть до 1500÷1800°С) газовой коррозии и эрозии горячих элементов конструкций авиакосмической и ракетной техники из углеродсодержащих материалов и сплавов на основе тугоплавких металлов в условиях нестационарного взаимодействия со скоростными высокоэнтальпийными потоками кислородсодержащих газов (воздух, продукты сгорания топлив и др.).

[17]

Покрытия наносят из шликерной суспензии, связующим в которой является дистиллированная вода или этилсиликат, а наполнителем служит порошок указанного состава. Нанесенные слои подвергают сушке на воздухе и последующей термообработке в вакуумной среде при 1300÷1600°С. В результате формируется защитное покрытие, представляющее собой гетерофазный слой в виде дендритно-ячеистого тугоплавкого каркаса из силицидов входящих в состав металлов, ячейки которого заполнены легкоплавкой (относительно температуры эксплуатации) кремнийсодержащей эвтектикой. Защитная способность обеспечивается образованием при окислении самовосстанавливающейся оксидной стеклообразной пленки на основе легированного кремнезема с низкой каталитической активностью. Эффект самозалечивания заключается в быстром заполнении случайных дефектов вязкопластичной эвтектикой и ускоренным, по сравнению с известными

[18]

покрытиями, формированием оксидной пленки. Стойкость к эрозионному уносу обеспечивается наличием разветвленного тугоплавкого каркаса. Покрытие способно защитить острые кромки элементов конструкций с радиусом затупления ≥ 0,5 мм, а также обеспечить эффективную защиту возникающих в процессе эксплуатации дефектов диаметром до 0,3 мм.

[19]

К недостаткам прототипа следует отнести увеличение эрозионного уноса заявленных покрытий при Tw≥1650°С в условиях взаимодействия со скоростными потоками кислородсодержащих газов. Это связано с уменьшением количества каркасообразующих силицидных фаз в результате их частичного растворения в жидкой фазе по достижении температур солидуса. Наиболее существенным недостатком является потеря работоспособности покрытий при Тw ~ 1800°С в условиях значительного внешнего разрежения (Pw≤0,1 атм.) в результате нарушения сплошности оксидной пленки из-за образования на границе раздела «покрытие - оксидная пленка» и выхода наружу газообразных продуктов окисления (преимущественно SiO, МoО3 и В2О3). Скорости эрозионного уноса и сублимации возрастают с увеличением рабочей температуры и с понижением давления окружающей среды.

[20]

Техническим результатом от использования предлагаемого изобретения является разработка материала, обеспечивающего повышение температурно-временных интервалов работоспособности наносимых из него жаростойких покрытий в скоростных высокоэнтальпийных потоках кислородсодержащих газов при температурах на поверхности Tw≥1800°С, с одновременным сохранением их каталитической активности на уровне Kw=2÷5 м/с.

[21]

Указанный технический результат достигается тем, что в материал для жаростойкого защитного покрытия, содержащий титан, молибден, бор и кремний, дополнительно вводят кальций, а также один или более элементов из группы редкоземельных металлов (РЗМ), включающей скандий, иттрий, лантан и лантаноиды с атомными номерами от 58 до 71, при следующем соотношении компонентов, мас. %: титан 35,0÷40,0, молибден 8,0÷10,0, бор 8,0÷10,0, кальций 1,5÷3,0, по меньшей мере один элемент из группы РЗМ 0,2÷0,8, кремний - остальное. При этом материал имеет гетерофазную структуру, представленную преимущественно следующими фазами: диборидом титана (ТiВ2), дисилицидом титана и молибдена переменного состава (TixMo1-xSi2, 0,1<х<0,87), дисилицидами титана, молибдена и кальция (TiSi2, MoSi2, CaSi2) и несвязанным в химические соединения кремнием (Si). Материал предназначен для наслоенного нанесения на изделия из углерод-углеродного композиционного материала, углерод-керамического композиционного материала, углеграфитового материала, сплава на основе ниобия,

[22]

молибдена или вольфрама методами шликерно-обжигового наплавления или газотермического напыления.

[23]

Сущность заявляемого технического решения поясняется ниже. В работе [Терентьева B.C., Астапов А.Н. Концептуальная модель защиты особожаропрочных материалов в гиперзвуковых потоках окислительного газа // Известия вузов. Порошковая металлургия и функциональные покрытия. 2017. №3. С.51-64. DOI: dx.doi.org/10.17073/1997-308X-2017-3-51-64] авторами предложена и обоснована концептуальная физико-химическая модель работы жаростойкого покрытия в гиперзвуковых потоках окислительного газа. Модель основана на создании разветвленной гетерофазной структуры покрытия в виде эрозионностойкого каркаса дендритно-ячеистого типа из тугоплавких фаз с наличием в его ячейках относительно легкоплавкой эвтектики. В состав последней должны входить элементы, способные к образованию самовосстанавливающейся при окислении низкокаталитичной защитной оксидной пленки.

[24]

В патенте-прототипе необходимая гетерофазная структура формируется непосредственно в процессе нанесения и термообработки защитного слоя, т.е. при получении самого жаростойкого покрытия, а не исходного материала для него. Однако, для построения структуры в соответствии с рассмотренной выше моделью наиболее рациональным является получение гетерофазного материала с заданным химическим и фазовым составами на этапе создания самого материала. Тогда при обеспечении на границе раздела «подложка - покрытие» эффективного барьерно-компенсационного подслоя данный материал может быть нанесен в виде жаростойкого слоя практически на любой из жаропрочных материалов одним из методов наслоенного формирования. В качестве последних могут использоваться шликерно-обжиговое наплавление, методы газотермического напыления (плазменное, ионно-плазменное, детонационное и пр.) или их комбинации. Указанные методы наилучшим образом обеспечивают сохранение в покрытии морфологических особенностей структуры и фазового состава наносимого материала.

[25]

Описанный подход открывает широкие материаловедческие возможности рецептурной разработки практически универсального материала для покрытий, т.к. позволяет на этом этапе абстрагироваться как от характера защищаемого материала, так и от особенностей, присущих тому, или иному методу нанесения покрытий. Привязка к конкретному конструкционному материалу осуществляется на следующей стадии - при разработке технологического процесса нанесения созданного материала в виде защитного покрытия с формированием необходимого количества функциональных слоев.

[26]

Получение гетерофазного материала для покрытия в виде сплава, компакта или порошка возможно любым методом изготовления материалов, позволяющих получить

[27]

заданный химический и фазовый составы и обеспечить характерные особенности микроструктуры. Например, могут быть использованы металлургические методы выплавки слитков или технологии самораспространяющегося высокотемпературного синтеза спеков с последующим механическим диспергированием и классификацией порошков по фракциям.

[28]

Анализ работоспособности покрытий, сформированных из материала, взятого за прототип, в условиях взаимодействия со скоростными потоками, выявил необходимость сужения концентрационных границ по основным элементам (кремний, титан, молибден) с целью обеспечения рационального соотношения между дисилицидными фазами, образующими эрозионностойкий каркас, и эвтектикой, обеспечивающей быстрое самозалечивание дефектов. Необходимость повышения стойкости к эрозионному уносу наносимых покрытий потребовала увеличения тугоплавкости их основного (неокисленного) слоя и вязкости оксидных пленок, формирующихся в процессе окисления. Первую задачу решали путем кардинального увеличения содержания бора в материале, а, следовательно, и тугоплавкого диборида титана (температура плавления - 2970°С). Вторую задачу решали за счет дополнительного введения в состав материала кальция и РЗМ, которые в совокупности с остальными компонентами позволяют повысить степень гетерогенности образующейся поверхностной оксидной пленки и улучшить ее функциональные свойства.

[29]

Нижние и верхние границы содержания компонентов определяли экспериментально, исходя из их влияния на получаемую гетерофазную структуру материала, жаростойкость и стойкость к эрозионному уносу покрытий, формируемых из него.

[30]

Содержание основных элементов (кремний, титан, молибден) в заявляемом материале находится в пределах, установленных в прототипе. Сужение концентрационных границ указанных элементов (по сравнению с прототипом) обеспечивает получение в структуре материала замкнутого мелкосетчатого каркаса, представленного фазами TixMo1-xSi2 (0,1<х<0,87), TiSi2 и MoSi2, с заключенной в его ячейки тройной эвтектикой (Si+TixMo1-xSi2+TiSi2). Выход за пределы границ приводит к потере замкнутости каркаса, а, следовательно, к снижению сопротивления наносимых покрытий эрозионному уносу в потоках.

[31]

Выбор соотношения остальных компонентов в материале обусловлен следующими соображениями. С увеличением содержания бора увеличивается количество высокодисперсных частиц диборида титана ТiВ2, равномерно распределенных в объеме материала. Их тугоплавкость и высокая термодинамическая устойчивость (в сравнении с выше упомянутыми дисилицидами) способствуют повышению температуроустойчивости материала, что положительно сказывается на стойкости к эрозионному уносу формируемых из него покрытий. Поэтому целесообразно введение максимально возможного количества бора. Однако при содержании его в материале более 10.0 мас. % наблюдается рост скорости

[32]

окисления материалов и нанесенных из них покрытий из-за уменьшения количества эвтектики в структуре и значительного снижения тугоплавкости образуемого при окислении боросиликатного стекла. Содержание бора менее 8,0 мас. % не целесообразно по причине снижения температуроустойчивости материала, о чем свидетельствует частичная потеря формы у соответствующих компактов при их окислении в среде спокойного воздуха в течение 60 мин при 1650°С.

[33]

Положительное влияние от введения бора в указанных пределах проявляется также на улучшении функциональных свойств формируемой поверхностной оксидной пленки. Оксид бора В2О3 снижает кристаллизационную способность диоксида кремния SiO2 в результате уменьшения структурированности образуемого при сплавлении боросиликатного стекла SiO2⋅B2O3. Аморфизация оксидной пленки, в свою очередь, уменьшает ее газопроницаемость и снижает вероятность рекомбинации атомов потока на поверхности, т.е. повышает антикаталитические свойства. Снижение температуры солидуса и вязкости боросиликатного стекла (в сравнении с кремнеземом) способствует увеличению его смачивающих свойств, что приводит к улучшению способности к самозалечиванию дефектов.

[34]

С другой стороны, известно, что боросиликатные стекла, содержащие оксиды переходных металлов IV-VI групп периодической системы химических элементов Д.И. Менделеева, в том числе ТiO2 и МoО3, обладают сильной тенденцией к разделению фаз (несмешиваемостью). Гетерогенные оксидные системы характеризуются ростом температур ликвидус и повышенной вязкостью. В свою очередь, увеличение вязкости снижает скорость диффузии кислорода через оксидную пленку согласно соотношению Стокса-Эйнштейна. Другим потенциальным преимуществом повышенной вязкости наравне с увеличенной температурой ликвидус является некоторое снижение уровня давления насыщенных паров гетерогенных боросиликатных пленок по сравнению с гомогенным боросиликатным стеклом. Однако следует принимать во внимание, что каталитическая активность гетерогенных силикатных систем будет выше, чем у аналогичных гомогенных.

[35]

При окислении покрытий, заявленных в патенте-прототипе, формируется гетерогенная оксидная пленка, состоящая из боросиликатного стекла SiO2⋅B2O3 и не смешиваемого с ним оксида титана ТiO2 в форме рутила. Последний представляет собою обширную сеть микроскопических игл, расположенных абсолютно хаотично, что приводит к появлению эффекта «армирования» оксидной пленки, а, следовательно, к дополнительному увеличению сопротивления эрозионному уносу в потоках.

[36]

С целью повышения степени гетерогенности оксидной пленки в настоящей работе выполнены исследования по дополнительному легированию рассматриваемых материалов кальцием. Определяющим в выборе кальция послужили, с одной стороны, его поверхностная

[37]

активность по отношению к кремнию и РЗМ и реакционная активность при взаимодействии с кислородом, а, с другой стороны, - способность его катионов (Са2+) выступать в роли модификатора и приводить к образованию микронеоднородных областей в силикатных стеклах. Увеличение количества указанных катионов способствует снижению степени полимеризации структурного каркаса модифицированных стекол, что выражается в их большей способности к ликвации (жидкостной несмешиваемости) и, в конечном счете, приводит к расслаиванию.

[38]

Введение кальция в материал для нанесения жаростойкого покрытия - важная отличительная особенность предлагаемого изобретения, которая обеспечивает преимущества перед известными способами, в том числе прототипом.

[39]

Установлено, что при легировании рассматриваемых материалов кальцием в структуре образуется новая фаза - дисилицид кальция CaSi2. При нанесении покрытий и их последующей высокотемпературной эксплуатации кальций преимущественно сегрегирует в поверхностных слоях за счет высокой скорости диффузии в вязко-пластичных составляющих (эвтектиках и стеклах). Находясь в тесном контакте с оксидом титана ТiO2, оксид кальция СаО может вступать с ним во взаимодействие и образовывать сложный оксид СаТiO3 со структурой рутила игольчатого строения. Высокие температуры плавления указанных фаз (ТiО2 - 1843°С, СаТiO3 - 1975°С) и морфологические особенности строения и распределения в оксидной пленке позволяют рассматривать их в качестве армирующих элементов, призванных внести дополнительный вклад в повышение сопротивления эрозионному уносу.

[40]

Заметный эффект от введения кальция в состав материала для жаростойкого покрытия наблюдается при его содержании не менее 1,5 мас. %. Однако при содержании его более 3,0 мас. % наблюдается снижение температуроустойчивости материала в результате увеличения количества низкотемпературных эвтектик, образуемых между CaSi2, другими силицидами материала и кремнием. Кроме того, при взаимодействии покрытий, нанесенных из соответствующих материалов, с гиперзвуковыми потоками воздушной плазмы наблюдается увеличение константы скорости гетерогенной рекомбинации атомов Kw выше 5 м/с (при Tw>1820÷1830°С), что негативно сказывается на активации процесса самопроизвольного роста радиационно-равновесных температур поверхности.

[41]

В изобретении, взятом за прототип, было установлено, что легирование покрытий иттрием в пределах от 0,1 до 1,5 мас. % положительно влияет на их жаростойкость. Являясь поверхностно-активным элементом, иттрий преимущественно концентрируется на поверхности покрытий в виде самостоятельной фазы YSi2 или растворяется в фазе TixMo1-xSi2. Имея более высокую реакционную способность при взаимодействии с кислородом, чем кремний, иттрий выступает эффективным катализатором окисления на стадии образования

[42]

первичной оксидной пленки, а также увеличивает ее адгезию к поверхности основного (неокисленного) слоя покрытия.

[43]

В настоящей работе исследование микролегирующего действия поверхностно-активных элементов на жаростойкость рассматриваемых материалов расширено на всю группу РЗМ, включающую, помимо иттрия, скандий, лантан и лантаноиды с атомными номерами от 58 до 71. Установлено, что микролегирование РЗМ до 0,1÷0,15 мас. % не меняет фазового состава, присущего материалам без РЗМ и не отражается на их микроструктурах. Локальным рентгеноспектральным анализом выявлено, что они растворяются в дисилициде переменного состава TixMo1-xSi2. Начиная с 0,2÷0,3 мас. % идентифицируются новые фазы - силициды РЗМ (преимущественно дисилициды), которые образуют с другими силицидами материала и кремнием низкотемпературные эвтектики.

[44]

Анализ результатов испытаний компактов материалов на жаростойкость в среде спокойного воздуха при 1650°С свидетельствует о целесообразности их дополнительного моно или комплексного микролегирования элементами из группы РЗМ в суммарных пределах 0,2÷0,8 мас. %. Меньшие количества не оказывают существенного влияния на жаростойкость. Легирование РЗМ свыше 0,8 мас. % приводит к резкому возрастанию скорости окисления получаемых материалов и, как следствие, к росту удельного изменения их массы. Это связано с увеличением количества низкотемпературных эвтектик, образуемых между силицидами РЗМ, другими силицидами материала и кремнием. Особенно предпочтительно микролегирование материалов лантаном, церием, тербием и иттербием в силу их наибольшей реакционной активности к кислороду, о чем свидетельствуют сравнительные данные разностей значений электроотрицательностей по Л.К. Полингу между кислородом и каждым элементом из группы РЗМ.

[45]

Существенным признаком и преимуществом предлагаемого материала для жаростойкого покрытия является его гетерофазная структура. Как отмечено выше, предварительная выплавка (синтез) дает возможность получить материал с требуемым фазовым составом и структурой, а затем перенести его в виде жаростойкого покрытия на различные по классу защищаемые материалы с привлечением одного из методов наслоенного нанесения или их комбинаций. В результате обеспечивается высокая воспроизводимость структуры покрытия и снижается вероятность появления случайных ошибок по сравнению с прототипом, где необходимая структура формируется непосредственно в процессе создания самого покрытия, а не материала для него.

[46]

Таким образом, заявляемый химический состав обеспечивает получение гетерофазной структуры материала, преимущественно представленной следующими фазами: диборидом титана (TiB2), дисилицидом титана и молибдена переменного состава (TixMo1-xSi2, 0,1<х<

[47]

0,87), дисилицидами титана, молибдена и кальция (TiSi2, MoSi2, CaSi2), несвязанным в химические соединения кремнием (Si) и следами дисилицидов РЗМ.

[48]

Достижение технического результата от реализации предлагаемого изобретения было экспериментально подтверждено во ФГУП «Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского» (ФГУП «ЦАГИ») при проведении огневых газодинамических испытаний образцов-моделей на установке с высокотемпературной аэродинамической трубой ВАТ-104. оснащенной индукционным плазматроном. Моделировались нестационарные условия входа перспективного космического летательного аппарата в плотные слои атмосферы при его возвращении на Землю, а также условия воздействия высокоэнтальпийных гиперзвуковых потоков воздушной плазмы, направленных перпендикулярно исследуемым образцам-моделям, характерные для теплонапряженных элементов авиакосмической и ракетной техники.

[49]

Защитные покрытия формировались из заявляемого материала на образцы из углерод-углеродных (УУКМ) и углерод-керамических (УККМ) композиционных материалов и ниобиевых сплавов методом шликерно-обжигового наплавления или плазменного напыления. Параметры воздушной плазмы находились в пределах: скорость потока 4,0÷4,5 км/с (число Маха М=5,5÷6,5); энтальпия потока 30÷40 МДж/кг; температура торможения потока 8000÷10000°С, давление газа перед образцами 3,4÷3,7 кПа; степень диссоциации воздуха в потоке 80÷90%; степень ионизации около 1%. Достигнутые в процессе испытаний температуры на лицевой поверхности образцов Tw (вплоть до 2000°С) измеряли пирометром VS-CTT-285/E/P-2001 на длине волны 890 нм и тепловизором Тандем VS-415U на длине волны 650 нм с учетом поправки на спектральную степень черноты покрытий, которую принимали равной ε=0,7. С тыльной стороны образцов температуру контролировали термопарами BP 5/20. Взвешивание образцов проводили на аналитических весах GR-202 (AND) с точностью 10-4 г. В общей сложности было проведено более 20 испытаний. Все образцы выдержали испытания без разрушений.

[50]

Результаты огневых испытаний показали, что жаростойкие покрытия, нанесенные из заявляемого материала, обладают неоспоримыми преимуществами по эффективности защитного действия в гиперзвуковых потоках воздушной плазмы вплоть до температур Tw≤1840÷1850°С, что иллюстрируется ниже приведенными примерами. Работоспособность покрытий обеспечивается структурно-фазовым состоянием их основного (неокисленного) слоя и формированием на поверхности в процессе эксплуатации пассивирующей гетерогенной защитной пленки, представленной боросиликатным стеклом, модифицированным Са и РЗМ и одновременно армированным микроиглами оксидов ТiO2 и СаТiO3 в форме рутила.

[51]

К достоинствам предлагаемого материала также относится экологическая чистота, пожаро- и взрывобезопасность используемых компонентов. Примеры осуществления технического решения.

[52]

Приведенные ниже фигуры поясняют практическую реализацию заявляемого технического решения.

[53]

На фиг. 1 показан типовой режим газодинамических испытаний (п/п 1, табл. 2) образцов из УККМ класса Cf/SiC с покрытием-прототипом (фиг. 1а - изменение параметров режима во времени; фиг. 1б - типичный вид лицевой стороны образцов после испытаний).

[54]

На фиг. 2 показан типовой режим газодинамических испытаний (п/п 2 и 3 табл. 2) образцов из УККМ класса Cf/SiC с покрытием, нанесенным из заявляемого материала (фиг. 2а - изменение параметров режима во времени; фиг. 2б - типичный вид лицевой стороны образцов после испытаний).

[55]

На фиг. 3 представлена микроструктура поверхности покрытия, нанесенного из заявляемого материала, после газодинамических испытаний (п/п 4 табл. 2) (фиг. 3а - х3000; фиг. 3б - х9610).

[56]

С целью получения материалов для защитных покрытий были приготовлены 4 порошковые композиции, соотношение компонентов в которых приведено в табл. 1. Смеси поочередно загружали в полистироловый контейнер высокоэнергетической шаровой мельницы SPEX Sample Prep 8000 М-230 с шарами из метакрилата, в котором они перемешивались в течение 3 ч. Частота возвратно-поступательных движений контейнера с короткими боковыми перемещениями - 1080 циклов/мин. Таким образом был получен материал для защитных покрытий по прототипу (п/п 1, табл. 1).

[57]

[58]

Для осуществления заявляемого изобретения готовые смеси далее прессовали в цилиндрические заготовки диаметром 18 мм, высотой 15 мм на гидравлическом прессе ZDM 50Е с усилием 25 т. Плавки проводили во взвешенном состоянии в инертной атмосфере бестигельной индукционной печи ЭТМ-27, оснащенной электромагнитным индуктором высокой частоты. В качестве инертного газа использовали гелий высокой чистоты марки 7,0 (ТУ 0271-001-45905715-2016). Сплавы отливали в медные изложницы диаметром 10 мм. Для устранения ликвации слитки подвергали отжигу в вакуумной печи шахтного типа СШВЭ-

[59]

1.2.5/25 И2 при температуре 1100±2°С в течение 5 ч при остаточном давлении газов в камере 5÷6 мПа.

[60]

Приготовление порошков из выплавленных слитков осуществляли их дроблением на том же прессе с усилиями 14÷15 т с последующим диспергированием в той же шаровой мельнице до размерности 43÷80 мкм, наиболее пригодной для формирования покрытий методом плазменного напыления, и 5÷15 мкм - для шликерно-обжигового метода получения покрытий. Измельчение проводили в дистиллированной воде (2:1) шарами из карбида вольфрама в контейнере из того же материала. Таким образом были получены материалы для защитных покрытий в соответствии с настоящим изобретением (п/п 2-4 табл. 1).

[61]

Получение жаростойких покрытий осуществляли: методом шликерно-обжигового наплавления порошковых материалов по п/п 1-3 табл. 1 на образцы-диски диаметром ∅ 30 мм, толщиной h=8,5 мм из УККМ класса Cf/SiC; методом плазменного напыления порошковых материалов по п/п 1,4 табл.1 на образцы-диски ∅ 50 мм, h=2,2 мм из ниобиевого сплава ВН-3.

[62]

Получение шликерно-обжиговых покрытий осуществляли согласно технологии, приведенной в патенте-прототипе. Образцы предварительно были обезжирены этиловым спиртом и обезвожены ацетоном. Шликерный слой наносили кистью на воздухе на все поверхности и кромки образцов. Шликерная суспензия состояла из композиции, в которой в качестве связующего использовался этилсиликат, а в качестве наполнителя - указанные выше порошковые материалы. Соотношение этилсиликата и порошка в композиции составляло 1:1. После высушивания образцов в сушильном шкафу при температуре 100÷120°С в течение 30 мин их нагревали в вакуумной печи СШВЭ-1.2.5/25 И2 при остаточном давлении ~ 8÷9 мПа до температуры 1500±5°С.

[63]

Нанесение плазменных покрытий проводили на универсальной установке УПУ-3Д. В качестве плазмообразующего газа использовали аргон газообразный высшего сорта (ГОСТ 10157-79) с добавками 15 мас. % азота газообразного первого сорта (ГОСТ 9293-74). Расход газов на плазмообразование составлял 70 и 10 л/мин соответственно, на подачу указанных выше порошковых материалов - 5 л/мин (аргон). Режимы напыления: сила тока 350 А, напряжение 40 В, дистанция напыления 100 мм. В целях повышения надежности защиты острых кромок последние скругляли до радиуса R≥0,5 мкм, а напыление их проводили по схеме «кромка-плоскость-кромка». Подготовка поверхности заключалась в ее активации путем обдувки электрокорундом белым марки 25А (ГОСТ 28818-90) зернистостью 63÷80 мкм при давлении 0,3÷0,4 МПа. После обдувки поверхность образцов тщательно обрабатывали ацетоном и этиловым спиртом.

[64]

Контроль фазового состава полученных покрытий осуществляли с привлечением методов рентгеновского фазового анализа на дифрактометре ARL X'tra фирмы Thermo Scientific. Структуру исследовали на растровом электронном микроскопе EVO-40 (Carl Zeiss) с совмещенным энергодисперсионным спектрометром Х-Мах (Oxford Instruments) для микроанализа. В результате покрытия, нанесенные из заявляемого материала, содержали следующие фазы (в порядке убывания, мол.%): TiB2, TixMo1-xSi2 (преимущественно Ti0,8Mo0,2Si2 и Ti0,4Mo0,6Si2), TiSi2, CaSi2, Si, MoSi2 и следы LnSi2 (Ln - РЗМ). Фазовый состав покрытий, сформированных по патенту-прототипу на образцах из УККМ, представлен (в порядке убывания, мол.%): TixMo1-xSi2, TiSi2, Si, TiB2 и следы YSi2. Толщины нанесенных покрытий находились в пределах 80÷100 мкм. Получить качественные покрытия на образцах из ВН-3 с использованием технологии плазменного напыления материала по прототипу не удалось.

[65]

Образцы с покрытиями испытывали в условиях, моделирующих процессы термохимического воздействия потока воздушной плазмы на элементы спускаемого аппарата, летящего со скоростью 4÷8 км/с на высотах 60÷100 км. Типичные результаты испытаний представлены в табл. 2 и на фиг. 1-3.

[66]

В качестве характерного примера на фиг. 1а и фиг. 2а представлены типовые режимы сравнительных испытаний образцов с покрытием по патенту-прототипу (п/п 1 табл. 1) и с покрытиями, нанесенными из заявляемого материала (п/п 2, 3 табл. 1), соответственно. Условные обозначения кривых на этих рисунках: 1, 4 - температура лицевой/тыльной поверхности образца в критической точке, Tw; 2 - мощность генератора, Wa; 3 - давление торможения в форкамере подогревателя, P0. Образцы испытывали при фиксации уровня температур на поверхности Tw=1820÷1850°С в течение не менее 400 с. Типичный внешний вид лицевых поверхностей соответствующих образцов после снятия их с испытаний приведен на фиг. 1б и фиг. 2б, средние потери массы образцами представлены в п/п 1-3 табл. 2.

[67]

Следует обратить внимание, что у образцов с покрытием по патенту-прототипу через 650÷700 с от начала огневых экспериментов регистрировался самопроизвольный монотонный рост температуры на лицевых поверхностях, которая уже через 170÷220 с составляла Tw ~ 2000°С (кривая 1 на фиг. 1а). При достижении этой температуры образцы снимали с испытаний для осмотра. Из приведенной на фиг. 1б фотографии поверхности видно, что в области, отвечающей эпицентру воздействия плазменного потока, появляется пузырчатость, характерная для нарушения сплошности оксидной пленки из-за образования летучих соединений SiO, МoО3, В2O3, упругость паров которых возрастает с повышением

[68]

температуры. Несплошность пленки в свою очередь приводит к увеличению каталитичности поверхности покрытия, а, следовательно, к дополнительному разогреву.

[69]

Для образцов с покрытиями, нанесенными из заявляемого материала, самопроизвольного роста температур на их поверхностях не наблюдалось. В процессе огневых экспериментов Tw оставалась на заданном уровне во всем временном интервале (970÷980 с) воздействия максимальных температур (кривая 1 на фиг. 2а). Покрытия на всех образцах сохранили целостность (фиг. 2б) и продемонстрировали существенно более высокую эффективность защитного действия, чем покрытие-прототип (потери масс составили 65±8 и 70±10 против 120±30 г/(м2⋅ч) соответственно).

[70]

Типичный вид микроструктуры оксидной пленки, формирующейся в процессе огневых испытаний покрытий, нанесенных из заявляемого материала, приведен при различных увеличениях на фиг. 3 (на примере образцов из ВН-3). Видно, что гетерогенная структура пленки представлена боросиликатным стеклом, модифицированным Са и РЗМ и одновременно армированным микро- и наноразмерными кристаллами ТiO2 и СаТiO3 игольчатого строения.

[71]

Каталитическую активность покрытий определяли из сопоставления результатов численных параметрических исследований обтекания и теплообмена теплоизолированного диска (расчет) и прямых измерений температур теплоизолированных эталонов и исследуемых образцов в процессе огневых испытаний (эксперимент). Результаты показали, что покрытия, нанесенные из заявляемого материала, обладают низкими значениями каталитической активности поверхности в гиперзвуковых потоках воздушной плазмы -значения константы скорости гетерогенной рекомбинации атомов азота и кислорода при Tw≤1840÷1850°С составляют Kw=2÷5 м/с.

[72]

Комплексный анализ полученных результатов подтвердил высокую работоспособность и эффективность защитного действия жаростойких покрытий, наносимых из заявляемого материала, а вместе с этим - достижение технического результата от реализации предлагаемого изобретения.

[73]

Работа выполнена в рамках государственного задания Министерства образования и науки РФ (задание №9.1077.2017/ПЧ).

[74]

Как компенсировать расходы
на инновационную разработку
Похожие патенты