патент
№ RU 2670240
МПК G01L1/04
Номер заявки
2017135681
Дата подачи заявки
06.10.2017
Опубликовано
19.10.2018
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
1
Реферат

Изобретение относится к электронной технике, в частности к микроэлектронике, и может быть использовано при изготовлении кристаллов интегральных схем (ИС) и дискретных полупроводниковых приборов. Суть настоящего изобретения состоит в измерении механических напряжений в МЭМС структурах, включающем формирование пленки-покрытия на основе. Измеряют относительное удлинение пленки-покрытия по изменению величины зазора между краями балок пленки-покрытия посредством микроскопа. Используя одновременно две балки можно проверить результаты измерения механических напряжений, не проводя дополнительных технологических операций по формированию второй (контрольной) балки из пленки-покрытия. Для контрольной балки значения переменных b и bсовпадают со значениями этих переменных для первой (тестируемой) балки. Таким образом, для измерений механических напряжений в двух структурах из пленки-покрытия будут использоваться четыре переменные (b, b, L, L** - длина контрольной балки после травления фрагмента основы). Технический результат - повышение точности контрольного измерения, обеспечение возможности работы с тестовыми и рабочими пластинами, расширение перечня инструментов для измерения. 2 ил.

Формула изобретения

Способ измерения механических напряжений в МЭМС структурах, включающий формирование пленки-покрытия на основе, отличающийся тем, что измеряют относительное удлинение пленки-покрытия по изменению величины зазора между краями балок пленки-покрытия посредством микроскопа и рассчитывают механические напряжения на пластинах по формуле:

где L - длина свободного конца балки после травления фрагмента основы, bo - зазор между краями балок пленки-покрытия до травления фрагмента основы, b - зазор между краями балок пленки-покрытия после травления фрагмента основы, Eƒ - модуль Юнга покрытия, μƒ - коэффициент Пуассона покрытия.

Описание

[1]

Изобретение относится к электронной технике, в частности к микроэлектронике, и может быть использовано при изготовлении кристаллов интегральных схем (ИС) и дискретных полупроводниковых приборов. Остаточные напряжения в материалах микроэлектромеханических систем (МЭМС) существенно влияют на процент выхода годных кристаллов и на надежность ИС. В связи с этим необходимо постоянное совершенствование способов контроля механических напряжений.

[2]

Известен способ определения механических напряжений в тонких пленках путем вытравливания в подложке окон и измерения геометрических размеров деформированной пленки, по которым судят о величине механических напряжений, отличающийся тем, что, с целью повышения точности и упрощения процесса измерений, после травления подложку скрайбируют по лицевой стороне через выбранные для исследования структуры так, чтобы излом прошел параллельно свободно висящему краю пленки, отламывают часть пластины и вновь скрайбируют ее параллельно полученному ранее излому с шагом, обеспечивающим прохождение излома через исследуемые структуры, вновь отламывают часть структуры подложки и располагают ее под углом α к оси электронного микроскопа [1].

[3]

Недостатком данного способа является операция скрайбирования, которая вносит механические напряжения в исследуемую структуру. Кроме этого, необходимость излома образца не позволяет проводить измерения на рабочих пластинах.

[4]

Известен способ контроля величины остаточных напряжений в структуре пленка-подложка, включающий формирование между пленкой и подложкой промежуточного слоя заданной толщины, вскрытие в пленке методом фотолитографии окон в виде круга, отделение полоски пленки по краю окон на ширину 5-100 мкм путем селективного травления промежуточного слоя, определение относительного удлинения пленки по интерференционной картине в зазоре пленка-подложка и расчет остаточных напряжений σ по формуле:

[5]

[6]

где L - длина свободного конца балки после удлинения/сжатия, Lo - длина исходной балки, μƒ - коэффициент Пуассона покрытия, Eƒ - модуль Юнга покрытия [2].

[7]

Длину свободного конца балки L определяют по формуле:

[8]

[9]

где L1 - расстояние от точки отсчета до первой линии интерференции; i - номер линии; n - количество линий интерференции; (Li-Li-1) - расстояние между двумя линиями интерференции с номерами i и (i-1); λ - длина волны света, в котором наблюдалась интерференционная картина (для зеленого λ=0,54 (мкм)) [3].

[10]

Учитывая, что каждое измерение размера переменной вносит некоторую погрешность в расчет механических напряжений, то необходимо минимизировать число измерений. Кроме того, с уменьшением рассматриваемой области увеличивается точность измерений. Как известно, изображение, анализируемое исследователем, представляет собой матрицу 1000×1000 (пкс). Погрешность оператора составляет 1 (пкс). Количество измерений не менее трех: измерение Loдлины исходной балки, измерение L1 расстояния от точки отсчета до первой линии интерференции, измерение L2 расстояния от точки отсчета до второй линии интерференции. Количество линий интерференции более двух.

[11]

Проведем оценку величины L1 и L2. Например, для L 70 (мкм) в случае минимального количества измерений, то есть две линии интерференции: значение L2 будет составлять около 70 (мкм), а значением L1 можно пренебречь. Погрешность будет составлять 1 (пкс), то есть около 70 (нм).

[12]

В процессе расчета механических напряжений количество переменных можно описать зависимостью (n+1). Минимальное количество переменных - 3 (при n=2, то есть две линии интерференции). Очевидно, что с увеличением количества линий интерференции (n=3; 4; 5 …) количество переменных будет возрастать, а значит, погрешность увеличится.

[13]

Наиболее близким по сути к изобретению, является способ измерения механических напряжений в МЭМС структурах, включающий формирование между пленкой-покрытием и основой промежуточного слоя, причем промежуточный слой может иметь произвольную толщину, измеряют относительное удлинение пленки-покрытия по изменению величины зазора между краем балки и периферией пленки-покрытия посредством растрового электронного микроскопа и рассчитывают механические напряжения на рабочих пластинах по формуле:

[14]

[15]

где L - длина свободного конца балки после удлинения/сжатия, do - зазор между краем балки и областью периферии пленки-покрытия до травления промежуточного слоя, d - зазор между краем балки и областью периферии пленки-покрытия после травления промежуточного слоя, Eƒ - модуль Юнга покрытия, μƒ - коэффициент Пуассона покрытия [4].

[16]

К недостаткам прототипа можно отнести формирование промежуточного слоя между пленкой-покрытием и основой. Это вносит дополнительную операцию в технологический маршрут. Также, сужает диапазон применения способа, так как некоторые структуры (готовые изделия или в процессе формирования) состоят только из основы и пленки-покрытия.

[17]

Кроме того, в процессе освобождения напряжений в исследуемом фрагменте пленки-покрытия возникает подтрав в области периферии. Вследствие этого сдвигается граница периферийной области, что увеличивает погрешность измерений.

[18]

Также возможно проводить измерения с использованием различных типов микроскопов (не только растрового электронного микроскопа). Микроскоп применяют с целью измерения расстояния. Не обязательно использовать физический принцип, на котором работает растровый электронный микроскоп.

[19]

Можно проводить измерения не только на рабочих, но и на тестовых пластинах.

[20]

Задачей настоящего изобретения является повышение точности контрольных измерений, обеспечение возможности работы с тестовыми и рабочими пластинами.

[21]

Поставленная задача решается тем, что измеряют механические напряжения в МЭМС структурах, включающие формирование пленки-покрытия на основе, причем измеряют относительное удлинение пленки-покрытия по изменению величины зазора между краями балок пленки-покрытия посредством микроскопа и рассчитывают механические напряжения на пластинах по формуле:

[22]

[23]

где L - длина свободного конца балки после травления фрагмента основы, bo - зазор между краями балок пленки-покрытия до травления фрагмента основы, b - зазор между краями балок пленки-покрытия после травления фрагмента основы, Eƒ - модуль Юнга покрытия, μf - коэффициент Пуассона покрытия.

[24]

Возможность измерения без использования промежуточного слоя расширяет диапазон применения способа. В процессе формирования МЭМС структур часто используется набор материалов из нескольких пленок. Таким образом, исследуя каждую пленку в отдельности, можно получить более точные значения механических свойств используемых материалов.

[25]

Количество измерений переменных в заявляемом способе по сравнению с прототипом не меняется и составляет три, а именно: измерение L длины тестируемой балки после травления фрагмента основы, измерение b зазора между краями балок пленки-покрытия после травления фрагмента основы, измерение b0 зазора между краями балок пленки-покрытия до травления фрагмента основы. Однако, формируя одновременно две балки разной длины можно проверить результаты измерения механических напряжений, не проводя дополнительных технологических операций по формированию второй (контрольной) балки из пленки-покрытия. Для контрольной балки значения переменных b и bo совпадают со значениями этих переменных для первой (тестируемой) балки. Таким образом, для измерений механических напряжений в двух структурах из пленки-покрытия, будет использоваться четыре переменные (b, bo, L, L** - длина контрольной балки после травления фрагмента основы) вместо шести. В результате, сокращается количество измерений переменных на 2⋅m, где m - количество контрольных балок, значит, повышается точность контрольных измерений.

[26]

На примере растрового электронного микроскопа можно оценить погрешность, вносимую дополнительным измерением переменных. На мониторе изображение состоит из 1000 пкс. Погрешность, вносимая оператором, то есть за счет человеческого фактора, составляет не менее 1 пкс. Следовательно, погрешность контрольного измерения можно выразить как , где j - общее количество переменных, k - длина измеряемой j-структуры.

[27]

Если размер образцов находится в миллиметровом и более диапазоне, то возникают сложности с получением изображения исследуемой области структуры целиком в растровом электронном микроскопе. Поэтому, в некоторых случаях микроскопы с меньшим увеличением (по сравнению с растровым электронным) лучше подойдут для измерения механических напряжений.

[28]

На фиг. 1 и на фиг. 2 представлен макет балочной структуры с контролируемыми параметрами, где: L0 - длина тестируемой балки до травления фрагмента основы, L* - длина контрольной балки до травления фрагмента основы, b0 - зазор между краями балок пленки-покрытия до травления фрагмента основы, 1 - пленка-покрытие, 2 - тестируемая балка, 3 - основа, 4 - контрольная балка.

[29]

Пример конкретного применения. С помощью заявляемого способа проведены исследования и определены величины остаточных напряжений σ в МЭМС структурах на примере Si (основа) - плазмохимический SiO2 (пленка-покрытие, исследуемый материал). С использованием микроскопа было определено, что величина зазора bo между краями балок пленки-покрытия до травления фрагмента основы 10.4 мкм, значение b зазора между краями балок пленки-покрытия после травления фрагмента основы 10.1 мкм, L длина свободного конца балки после травления фрагмента основы 75 мкм. С учетом значения упругих постоянных пленки-покрытия из оксида кремния (Eƒ/(1-μƒ)) 87.5 ГПа, значение механических напряжений σ составляет -350 (МПа).

[30]

Проведение контрольных измерений посредством отдельного формирования контрольной балки вносит следующую погрешность. Изображение на мониторе оператора растрового электронного микроскопа состоит из 1000 пкс. Погрешность, вносимая оператором, не менее 1 пкс. Значит, при измерении величины зазора boпогрешность составит 10.4 нм, при измерении величины зазора b погрешность составит 10.1 нм. Таким образом, при отдельном формирования контрольной балки длиной 75 мкм, абсолютная погрешность контрольного измерения составит 23.9 (МПа), относительная погрешность контрольного измерения 6.8%.

[31]

Таким образом, заявляемый способ контроля механических напряжений в МЭМС по сравнению с прототипом позволяет повысить точность контрольных измерений, расширение диапазона применения способа, в результате обеспечивается возможность работы с тестовыми и рабочими пластинами, расширить перечень инструментов для измерения.

[32]

Источники информации:

[33]

1. Патент СССР 1442012.

[34]

2. Патент РФ 2345337.

[35]

3. В.А. Зеленин. Контроль остаточных напряжений в структурах Si-SiO2. Доклады БГУИР, №8(70), 2012.

[36]

4. Патент РФ 2624611 - прототип.

Как компенсировать расходы
на инновационную разработку
Похожие патенты