для стартапов
и инвесторов
Изобретение относится к области создания эпоксидных связующих для полимерных композиционных материалов конструкционного назначения. Изобретение может использоваться в авиационной, космической, машино-судостроительной промышленности и других областях техники. Эпоксидное связующее включает мас.ч.: эпоксиноволачную смолу 85-100, азотсодержащую эпоксидную смолу 85-100, отвердитель, представляющий собой продукт взаимодействия 4,4'-диаминодифенилсульфона с карбоксилированными нанотрубками при их массовом соотношении 100:(1-10) 85-90, и продукт конденсации гликолей с диметилтерефталатом 5-20. Препрег включает указанное эпоксидное связующее и волокнистый наполнитель - углеродные жгуты, ленты, ткани при следующем соотношении компонентов, мас.%: указанное эпоксидное связующее 30-50, указанный волокнистый наполнитель 50-70. Изобретение позволяет создавать эпоксидные связующие, препреги и изделия из них с высокими прочностными свойствами, повышенной ударной вязкостью и пониженным влагопоглощением. 3 н. и 1 з.п. ф-лы, 4 табл., 3 пр.
1. Эпоксидное связующее, включающее эпоксиноволачную смолу, азотсодержащую эпоксидную смолу и отвердитель, отличающееся тем, что оно дополнительно содержит продукт конденсации гликолей с диметилтерефталатом, а в качестве отвердителя оно содержит продукт взаимодействия 4,4'-диаминодифенилсульфона с карбоксилированными нанотрубками при следующем соотношении компонентов, мас.ч.: 2. Эпоксидное связующее по п.1, отличающееся тем, что содержание карбоксилированных нанотрубок в отвердителе составляет 1-10 мас.ч. 3. Препрег, включающий эпоксидное связующее и волокнистый наполнитель, отличающийся тем, что в качестве эпоксидного связующего он содержит эпоксидное связующее по п.1, а в качестве волокнистого наполнителя - углеродные жгуты, ленты, ткани при следующем соотношении компонентов, мас.%: 4. Изделие, отличающееся тем, что оно выполнено путем формования препрега по п.3. эпоксиноволачная смола 85-100 азотсодержащая эпоксидная смола 85-100 продукт конденсации гликолей с диметилтерефталатом 5-20 отвердитель 85-90 указанное эпоксидное связующее 30-50 указанный волокнистый наполнитель 50-70
Изобретение относится к области создания эпоксидных связующих для полимерных композиционных материалов (ПКМ) конструкционного назначения на основе волокнистых углеродных наполнителей, которые могут быть использованы в авиационной, космической, машино-судостроительной промышленности и других областях техники. Известно эпоксидное связующее для армированных пластиков, включающее эпокситрифенольную смолу ЭТФ, эпоксиалифатическую смолу ДЭГ-1, отвердитель - фенолформальдегидную смолу СФ-340А и смесь растворителей: ацетона, спирта и толуола, а также препрег на основе указанного связующего и органо- и угленаполнителей (патент РФ №2260022). Известно эпоксидное связующее для армированных пластиков, включающее эпокситрифенольную смолу, отвердитель - анилинофенолоформальдегидную смолу, низкомолекулярный бутадиен-акрилонитрильный каучук с концевыми карбоксильными группами, ускоритель отверждения -бис[3-(3,5-ди-трет-бутил-4-оксифенил)пропил]сульфид и спиртоацетоновую смесь, препреги и композиционные материалы на его основе (патент РФ №2215759). Недостатком этих связующих являются недостаточно высокие прочностные свойства, а также длительный (до 23 часов) цикл отверждения связующего при температуре более 180°С, что приводит к высокой энерго- и трудоемкости процесса его переработки. Известно эпоксидное связующее, включающее смесь трех ароматических эпоксидных смол и отвердитель - цианогуанидин, препрег на его основе, полученный пропиткой указанным связующим стеклянных, углеродных и органических волокнистых наполнителей, а также изделие, полученное путем формования указанного препрега (патент США №6139942). Недостатками известного связующего являются низкие показатели относительного удлинения при растяжении и малая жизнеспособность, а также невысокие прочностные свойства композиционного материала и изделий из него. Известно связующее на основе эпоксидной смолы с аминофункциализованными углеродными нанотрубками (заявка США №2008/0300357). Известны композиционные материалы на основе эпоксидных связующих, усиленных функциализованными нанотрубками (заявка WO №2005/028174). Недостатками известных материалов являются сложность и энергоемкость процесса аминофункциализации нанотрубок, а также невозможность обеспечить одинаковое по интенгсивности воздействие ультразвука на смолу при больших объемах производства, что приводит к неравномерности физико-механических свойств композиционных материалов, в частности к снижению прочности при межслоевом сдвиге, что влечет за собой расслоение изделий при эксплуатации. Наиболее близким аналогом, принятым за прототип, является эпоксидное связующее для препрега, включающее, мас.%: препрег, содержащий указанное эпоксидное связующее и волокнистый наполнитель при следующем соотношении компонентов, мас.%: и изделие, выполненное путем формования указанного препрега (патент РФ №2184128). Недостатками связующего-прототипа, препрега на его основе и изделия, выполненного из него, являются недостаточно высокие значения ударной вязкости, относительного удлинения при растяжении, прочности при межслойном сдвиге, а также повышенное влагопоглощение. Технической задачей предлагаемого изобретения является создание эпоксидного связующего, препрега на его основе для получения полимерного композиционного материала и изделия из него с высокими прочностными свойствами, повышенной ударной вязкостью и пониженным влагопоглощением. Для решения поставленной задачи предложено эпоксидное связующее, включающее эпоксиноволачную смолу, азотсодержащую эпоксидную смолу и отвердитель, которое дополнительно содержит продукт конденсации гликолей с диметилтерефталатом, а в качестве отвердителя оно содержит продукт взаимодействия 4,4'-диаминодифенилсульфона с карбоксилированными нанотрубками при следующем соотношении компонентов связующего, маc.ч.: Содержание карбоксилированных нанотрубок в отвердителе составляет 1-10 мас.ч. Предложен также препрег, включающий указанное эпоксидное связующее и волокнистый наполнитель - углеродные жгуты, ленты, ткани при следующем соотношении компонентов, мас.%: Предложено изделие, выполненное путем формования указанного препрега. Установлено, что повышение упруго-релаксационных свойств связующего достигается за счет модификации химической структуры полимера эластификаторами, образующими в процессе отверждения дисперсную фазу, способную рассеивать энергию удара в результате пластической деформации. Применение продукта конденсации гликолей с диметилтерефталатом позволяет улучшить технологические свойства препрега - повысить эластичность и снизить липкость. Предложенный в заявляемом изобретении отвердитель, представляющий собой продукт взаимодействия 4,4'-диаминодифенилсульфона с карбоксилированными нанотрубками, обладает рядом преимуществ. Установлено, что молекулы диамина активно взаимодействуют с поверхностью углеродных нанотрубок, и существенная часть диамина локализуется на их поверхности в аморфном состоянии. Скорость отверждения эпоксидной композиции нанокомпозитом определяется диффузией молекул диамина с поверхности углеродной нанотрубки. В результате время гелеобразования увеличивается, что приводит к увеличению степени конверсии связующего при отверждении композиционного материала. Химическое взаимодействие карабоксильных и аминогрупп способствует уменьшению функциональности отвердителя, образованию более гибкой сетки и улучшению релаксационных свойств полимерной матрицы, что приводит к увеличению относительного удлинения. Наличие ковалентных связей между аминогруппами отвердителя и карбоксильными группами, привитыми на поверхность углеродных нанотрубок, увеличивает их связь с матрицей. Перечисленные выше факторы позволяют увеличить прочность связующего без уменьшения его деформационных характеристик. Кроме того, использование предложенного отвердителя позволяет равномерно диспергировать нанотрубки по объему связующего без применения ультразвукового воздействия и позволяет им практически беспрепятственно проникать в межволоконное пространство наполнителя. В процессе отверждения трубки теряют диамин, взаимодействие между ними усиливается, и они начинают агрегировать на поверхности волокна, образуя своего рода «вискеры», которые обеспечивают более высокую адгезию между матрицей и наполнителем. Данный процесс обеспечивает увеличение прочности при межслоевом сдвиге. Таким образом, использование отвердителя на основе 4,4'-диаминодифенилсульфона и карбоксилированных углеродных нанотрубок позволяет увеличить: - относительное удлинение полимерной матрицы связующего при его разрушении, что при сохранении модуля упругости позволяет увеличить ее прочность и ударную вязкость разрушения; - время гелеобразования при отверждении связующего; - прочность композиционного материала и изделий, выполненных из него при межслоевом сдвиге и сжатии; - степень сохранения физико-механических свойств композиционного материала и изделий, выполненных из него при повышенных температурах; - снизить равновесное водопоглощение композиционного материала. Предлагаемое связующее перерабатывается по экологически безопасной расплавной технологии. Проведение процесса изготовления связующего по расплавной безрастворной технологии приводит к формированию бездефектной матрицы, а также обеспечивает экологическую безопасность производства связующего и процессов его переработки. В качестве эпоксиноволачной смолы могут быть использованы, например, смолы марок ЭН-6 (ТУ 6-05-1585-89) или УП-643 (ТУ 2225-605-11131395-2003), в качестве азотсодержащей эпоксидной смолы - различные смолы, но наилучший технический результат достигается при применении продукта конденсации п-аминофенола и эпихлоргидрина марки УП-610 (ТУ 2225-606-11131395-2003). В предлагаемом изобретении также использованы продукты конденсации гликолей с диметилтерефталатом, например - смола ТФ-82 (ТУ 6-05-1654-84), или смола ТФ-37 (ТУ 6-06-18-86-82), или смола ТФ-60 (ТУ 6-05-211-895-79); 4,4'-диаминодифенилсульфон (ТУ 6-14-17-95) и карбоксилированные углеродные нанотрубки «Таунит-М» (ТУ 2166-001-02069289-2007). Продукт взаимодействия 4,4'-диаминодифенилсульфон с карбоксилированными углеродными нанотрубками получают следующим образом: карбоксилированные углеродные нанотрубки, поставляемые в виде пасты по ТУ 2166-001-02069289-2007, в количестве 1-10 мас.ч. смешали со 100 мас.ч. 4,4'-диаминодифенилсульфона и прогрели в термошкафу при 80°С в течение 120 мин. Полученный продукт сушили в вакуумном шкафу при давлении не более 0,01 мПа в течение 6 часов и размалывали в шаровой мельнице. В примерах осуществления по изобретению использовали: пример 1-1 мас.ч. нанотрубок, пример 2-5 мас.ч. нанотрубок, пример 3-10 мас.ч. нанотрубок. Примеры осуществления Пример 1 В реактор, снабженный механической мешалкой, обогревом и охлаждением, последовательно при постоянном перемешивании загружали 85 мас. ч. эпоксидной смолы УП-610, 100 мас. ч. предварительно подогретой до 60-70°С эпоксиноволачной смолы УП-643, затем равномерно порциями загружали 5 мас. ч. смолы ТФ-82 и нагревали полученную смесь до 60-70°С. Смесь перемешивали в течение 0,5 ч, затем добавляли 90 мас. ч. продукта взаимодействия 4,4'-диаминодифенилсульфона с карбоксилированными углеродными нанотрубками и гомогенизировали смесь при температуре до 80°С в течение 2,5 часов с получением расплава связующего. Полученным связующим пропитывали однонаправленный углеродный жгут марки УКН-М-3к (ТУ 1916-05763346-96) с получением препрега с содержанием связующего 42 мас.%. Путем автоклавного формования в температурном диапазоне от 120 до 180°С в течение 8 часов и удельном давлении 0,7 МПа получали предкрылок. Технология изготовления связующего по примерам 2 и 3 аналогична примеру 1. По примеру 2 путем формования изготавливали закрылок, по примеру 3 - руль высоты. В таблице 1 приведены составы предлагаемого связующего и прототипа, в таблице 2 - физико-механические свойства заявляемого эпоксидного связующего и прототипа, в таблице 3 - свойства препрегов, в таблице 4 - свойства изделий по изобретению и прототипу. Определение температуры стеклования отвержденного связующего осуществляли методом термомеханического анализа по ASTM-E 1545-00 на термоаналитической установке Mettler Toledo. Ударную вязкость отвержденных связующих определяли по методу Шарпи на образцах без надреза по ГОСТ 4647-80. Прочность при растяжении отвержденных образцов связующего определяли в соответствии с ГОСТ 11262-80. Прочностные характеристики полученных композиционных материалов определяли: прочность при сжатии - по ГОСТ 25.602-80, прочность при растяжении - по ГОСТ 25.601-80, прочность при межслойном сдвиге методом короткой балки - по ОСТ 1 90199-75. Как видно из таблицы 2, предлагаемое связующее обладает более высокими физико-механическими свойствами в сравнении с прототипом, например, прочность при растяжении полимерной матрицы увеличилась на 25%, относительное удлинение при растяжении - на 30%, ударная вязкость - на 30%. Сравнительные данные таблицы 4 показывают, что разработанное связующее обеспечивает по сравнению с прототипом повышение прочности композиционных материалов и изделий при растяжении, прочности при межслойном сдвиге и модуля упругости при растяжении на 10-15%, прочности при сжатии - на 20%, а также высокий уровень сохранения свойств при 150°С. Таким образом, сочетание высоких теплостойких, прочностных и деформационных свойств полимерного связующего, получение композиционных материалов и изделий из него с физико-механическими характеристиками, превышающими свойства прототипа, приготовление связующего и его переработка по экологически безопасной расплавной технологии позволяют использовать предлагаемое эпоксидное связующее для изготовления конструкционных композиционных материалов и изделий из них.триглицидилпроизводное парааминофенола марки ЭАФ 12,8-15,0 полиглицидилпроизводное низкомолекулярного новолака марки УП-643 19,0-23,0 отвердитель 4,4'-диаминодифенилсульфон 10,0-16,0 продукт взаимодействия дифенилолпропана с эпихлоргидрином марки Диапласт 0,6-3,0 спирт изопропиловый или этиловый 17,2-23,0 ацетон 25,8-34,6, эпоксидное связующее 30-42 волокнистый наполнитель 58-70 эпоксиноволачная смола 85-100 азотсодержащая эпоксидная смола 85-100 продукт конденсации гликолей с диметилтерефталатом 5-20 указанный отвердитель 85-90 указанное эпоксидное связующее 30-50 указанный волокнистый наполнитель 50-70 Таблица 1 Наименование компонентов Состав по примерам, мас.ч Прототип 1 2 3 4 Эпоксиноволачная смола: УП-643 85 100 100 ЭН-6 ~ - 90 - Азотсодержащая эпоксидная смола: УП-610 100 90 85 ЭАФ - - 65 Смола ТФ-82 5 - - - Смола ТФ-37 - 15 - - Смола ТФ-60 - - 20 - Отвердитель - 4,4'-диаминодифенилсульфон и карбоксилированные нанотрубки 90 89 85 - Диапласт - - - 3,15 Спирт изопропиловый или этиловый - - - 121 Ацетон - - - 182 Таблица 2 № Наименование показателей Состав по примерам, мас.ч Прототип 1 2 3 4 1 Температура стеклования Tg, °C 198 202,4 200 195 2 Ударная вязкость α, кДж/м2 18,2 25,5 22 15 3 Прочность при растяжении σв, МПа 78 98 96 70 4 Модуль упругости при растяжении Е, ГПа 3,6 3,76 3,8 3,5 5 Относительное удлинение при растяжении ε, % 3,2 4,8 4,2 2,8 Таблица 3 № Наименование показателей Примеры по изобретению, мас.% Прототип 1 2 3 4 5 1 Массовая доля наполнителя, мас.%: Жгут углеродный УКН-М-3к 58 70,0 - 63,0 - Лента углеродная УОЛ-300-2-3 к - - 50 - - Лента углеродная ЛУ-П-0,1 - - - - 63,0 2 Массовая доля связующего в препреге, мас.% 42 30,0 50 37,0 37,0 3 Массовая доля летучих веществ, % - - - 1,7 4 Время гелеобразования связующего в препреге при температуре (170±2)°С, мин 12 14,5 8,2 11,4 Таблица 4 № Наименование показателей Примеры по изобретению Прототип 1 2 3 4 5 1 Прочность при растяжении σв, МПа 20°С 1588 1600 1560 1484 1380 150°С 1518 1520 1490 1432 1220 2 Модуль упругости при растяжении Ев, ГПа 20°С 144 148 140 130 120 3 Прочность при межслойном сдвиге τ1,3, МПа 20°С 92 88,5 89 79 74 150°С 80 74 62 59 59 4 Прочность при сжатии σ-в, МПа 20°С 1135 1140 1096 1020 1150 150°С 890 903 855 715 780 5 Влагопоглощение, % 0,3 0,15 0,2 0,42 0,5