для стартапов
и инвесторов
Изобретение относится к способу плазмохимической обработки углеродного носителя электрохимического катализатора. Способ заключается в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с возможностью перемешивания порошка, а также устройством подачи кислородо-аммиачной газовой смеси, установленной с возможностью подачи газовой смеси в полость вакуумной камеры, аммиачно-кислородную газовую смесь подают в вакуумную камеру, где возбуждают холодную плазму, перемешивают порошок углеродного носителя и производят обработку поверхности углеродного носителя холодной плазмой при низком давлении, при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя. Техническим результатом является повышение эффективности активации поверхности мелкодисперсных и наноразмерных углеродных носителей электрохимических катализаторов путем повышения равномерности и обеспечения высокой плотности распределения центров химической активации по рабочей поверхности частиц носителя, а также упрощение способа плазмохимической обработки углеродного носителя за счет исключения необходимости механического перемешивания частиц углер
Изобретение относится к области электрохимии, а именно, к способам предварительной обработки углеродных носителей электрохимических катализаторов, в частности, к способам плазмохимической обработки углеродных носителей электрокатализаторов и может быть использовано при производстве электрокатализаторов на углеродной основе для электролизеров и топливных элементов с твердополимерным электролитом. Электрохимические катализаторы являются составной частью большого класса электрохимических устройств, включающего в себя электролизеры и топливные элементы с твердополимерным электролитом. Наличие высоко развитой удельной поверхности углеродного носителя является необходимьм условием получения электрокатализаторов, обладающих высокой активностью при низком содержании металла катализатора. В качестве носителей электрокатализаторов используются различные углеродные материалы, обладающие высокой дисперсностью, электропроводностью, термо- и коррозионно-устойчивостью, такие как: различные виды сажи, мезоуглеродные микрошарики, фуллерены, углеродные нанотрубки, нановолокна и т.п.(Н.В. Кулешов, В.Н.Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М., МЭИ, 2010 г., с.9-11). Существенную роль при синтезе катализаторов играет предварительная обработка поверхности углеродного носителя. Известно, что емкость углеродного сорбента по отношению к благородным металлам зависит от его природы, количества поверхностных функциональных групп, являющихся центрами осаждения металла при химическом синтезе катализаторов, электронодонорных свойств и пористости. При этом желательно иметь возможность получать равномерное распределение частиц катализатора по всей поверхности углеродного носителя при обеспечении требуемой плотности распределения частиц, зависящей от конкретных требований к катализатору. Таким образом, дополнительная подготовка самого носителя позволяет контролировать количество и тип функциональных групп на поверхности и до определенной степени регулировать структуру конечного катализатора (см., например, Н.В. Кулешов, В.Н.Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М., МЭИ, 2010 г., с.12). Известны способы химического получения электрокатализаторов на углеродном носителе, при которых предварительно обрабатывают поверхность углеродного носителя, обладающего высокими значениями площади удельной поверхности (см., например, Н.В. Кулешов, В.Н. Фатеев, М.А. Осина «Нанотехнологии и наноматериалы в электрохимических системах» М., МЭИ, 2010 г., с.12). При этом с поверхности углеродного носителя химически удаляют функциональные группы препятствующие адсорбции прекурсора, участвующего в дальнейшем в химическом осаждении частиц катализатора на поверхности углеродного носителя, и химически прививают поверхностные функциональные группы, способствующие образованию центров адсорбции. Количество и распределение таких групп определяет количество и распределение по поверхности углеродного носителя частиц катализатора, синтезируемого в дальнейшем одним из известных химических способов. Недостатками указанных химических способов предварительной обработки углеродного носителя является их сложность, низкая экологичность, большие затраты времени, необходимого для их реализации. Кроме того, указанные способы не обеспечивают равномерного распределения центров активации по всей поверхности углеродного носителя. Известен способ предварительной обработки углеродного носителя, выполненного в виде многослойных углеродных нанотрубок (Chien-Chung Chen, Chia-Fu Chen, Chieng-Ming Chen, Fang-Tzu Chuang Electrochemistry Communications 9 (2007) 159-163). При осуществлении данного способа углеродный носитель помещают в 15М раствор азотной кислоты, нагревают до 80°C, выдерживают при заданной температуре в течение 18 часов, затем углеродный носитель отфильтровывают в деионизированной воде при помощи 0,1 мм политерофторэтиленовой мембраны. Недостатком данного способа является его сложность, низкая экологичность, большие затраты времени, необходимого для его реализации. Кроме того, данный способ не обеспечивает большого количества и равномерности распределения центров активации по всей поверхности углеродного носителя. Известен физико-химический способ предварительной обработки углеродного носителя, выполненного в виде многослойных углеродных нанотрубок, (Chien-Chung Chen, Chia-Fu Chen, Chieng-Ming Chen, Fang-Tzu Chuang Electrochemistry Communications 9 (2007) 159-163). При этом углеродный носитель помещают в трубку, выполненную из химически инертного стекла, заливают 5М раствором азотной кислоты, в течение 20 мин. нагревают до 210°C в микроволновой печи при мощности 100 Вт, выдерживают при заданной температуре в течение 30 мин, затем отфильтровывают углеродный носитель в деионизированной воде при помощи 0,1 мм политерофторэтиленовой мембраны. Применение данного способа позволяет уменьшить время активации поверхности углеродных нанотрубок и получить большее количество активных центров, необходимых для дальнейшего химического синтеза частиц катализатора по сравнению с описанным выше химическим способом. К недостаткам данного способа относится ограниченная область применения (возможно применение только при дальнейшем химическом синтезе катализатора), низкая экологичность, обусловленная необходимостью применения химических реагентов, большие затраты времени (за счет необходимости фильтрации раствора с частицами углеродного носителя), недостаточное количество активных центров на поверхности носителя, получаемых в результате применения данного способа, а также неравномерность их распределения по поверхности углеродного носителя. Известен способ плазмохимической обработки плоских и гранулированных образцов углеродных материалов, принятый за прототип, при котором поверхность углеродных образцов обрабатывают холодной плазмой при низком давлении в присутствии аммиачно-кислородной смеси (Р. Favia, N. De Vietro, R. Di Mundo, F. Fracassi, R.d'Agostino, Tuning the acid/base surface character of carbonaceous materials by means of cold plasma treatments. Plasma Processes and Polymers 3 (2006) 66-74). При этом обрабатываемые гранулированные образцы помещают в горизонтально расположенный стеклянный стакан с внутренними лопатками, образцы периодически механически перемешивают путем вращения стакана вокруг его оси, аммиачно-кислородную газовую смесь впрыскивают внутрь стакана, где затем возбуждают холодную плазму и производят обработку поверхности углеродных образцов в потоке ионизированных частиц холодной плазмы. Способ позволяет химически активировать поверхность обрабатываемых образцов путем прививки кислороде и/или азотосодержащих химических групп, которые являются центрами активации при дальнейшем химическом синтезе электрокатализаторов. К недостаткам способа относится малая эффективность его применения для активации углеродных носителей электрохимических катализаторов, таких как сажа, нанотрубки или нановолокна, обладающих высоко развитой поверхностью. Из-за сцепления и укрупнения частиц при их механическом перемешивании значительно уменьшается активная поверхность углеродного носителя, при этом часть поверхности углеродного носителя остается недоступной потоку обрабатывающей плазмы. Техническим результатом, на который направлено изобретение, является повышение эффективности активации поверхности мелкодисперсных и наноразмерных углеродных носителей электрохимических катализаторов путем повышения равномерности и обеспечения высокой плотности распределения центров химической активации по рабочей поверхности частиц носителя, а также упрощение способа плазмохимической обработки углеродного носителя за счет исключения необходимости механического перемешивания частиц углеродного носителя. Для достижения указанного технического результата предложен способ плазмохимической обработки углеродного носителя электрохимического катализатора, заключающийся в том, что обработку производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, держателем углеродного порошка, выполненным с возможностью перемешивания порошка, а также устройством подачи кислородо-аммиачной газовой смеси, установленной с возможностью подачи газовой смеси в полость вакуумной камеры, аммиачно-кислородную газовую смесь подают в вакуумную камеру, где возбуждают холодную плазму, перемешивают порошок углеродного носителя и производят обработку поверхности углеродного носителя холодной плазмой при низком давлении при этом для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя. Отличительной особенностью изобретения является то, что для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя. Использование в предложенном способе плазмохимической обработки углеродного носителя электрохимического катализатора пористой подложки с открытой пористостью, выполненной из инертного материала, пневматически связанной с устройством подачи кислородо-аммиачной газовой смеси при плавном увеличении потока газовой смеси пропускаемой через поры подложки, приводит к возникновению псевдокипящего слоя в объеме расположенных на подложке частиц углеродного носителя. При этом, благодаря малым размерам и весу частиц углеродного носителя, а также разделению восходящих газовых потоков порами подложки, происходит разделение и перемешивание углеродных частиц с приданием им дополнительного крутящего момента. В результате этого практически вся рабочая поверхность частиц углеродного носителя становится доступной для обработки потоком холодной плазмы. Одновременно с этим поступающая в полость вакуумной камеры кислородо-аммиачная газовая смесь является необходимым химическим реагентом для образования центров химической активации, поступающим непосредственно в зону сорбции прививаемых функциональных групп на поверхности углеродного носителя. При этом повышается интенсивность образования указанных функциональных групп, а также обеспечивается равномерность и высокая плотность их распределения. Кроме того, поступающая через пористую подложку кислородо-аммиачная газовая смесь обеспечивает необходимое давление для поддержания стабильной холодной плазмы. Выполнение пористой подложки из инертного материала предотвращает нежелательное загрязнение углеродного носителя при проведении плазмохимической обработки. Таким образом, то, что дополнительно для размещения порошка углеродного носителя используют установленную в держателе пористую подложку с открытой пористостью, выполненную из инертного материала, пневматически связанную с устройством подачи кислородо-аммиачной газовой смеси, помещают на подложку слои частиц углеродного носителя, через пористую подложку продувают кислородо-аммиачную газовую смесь с образованием над подложкой псевдокипящего слоя частиц углеродного носителя обеспечивает повышение эффективности активации поверхности мелкодисперсных и наноразмерных углеродных носителей электрохимических катализаторов путем повышения равномерности и обеспечения высокой плотности распределения центров активации, полученных путем прививки функциональных групп, на рабочей поверхности частиц носителя. Способ осуществляется следующим образом. Предварительную обработку углеродного носителя электрохимического катализатора производят в вакуумной камере, снабженной устройством для возбуждения холодной плазмы, и держателем углеродного порошка с подложкой, выполненной из пористого инертного материала с открытой пористостью (например, из пористого титана, полученного методом порошковой металлургии). При этом пористая подложка пневматически связана с устройством подачи кислородо-аммиачной газовой смеси. На пористой подложке послойно размещают обрабатываемый порошок углеродного носителя. Производят откачку вакуумной камеры. Затем через пористую подложку пропускают кислородо-аммиачную газовую смесь, плавно увеличивая подачу газа, до образования устойчивого псевдокипения слоя частиц углеродного носителя. Момент возникновения псевдокипящего слоя можно наблюдать визуально через смотровое окно вакуумной камеры. Параметры кислородо-аммиачной газовой смеси могут варьироваться в зависимости от свойств поверхности обрабатываемого углеродного носителя. При достижении необходимого давления, определяемого параметрами возбуждения холодной плазмы, возбуждают холодную плазму и производят обработку поверхности порошка углеродного носителя. При этом излишки газа, которые могут повлиять на устойчивость плазмы, откачиваются из вакуумной камеры при помощи штатных средств обеспечения вакуумирования рабочей камеры. Предложенный способ плазмохимической обработки углеродного носителя электрохимического катализатора был испытан при проведении предварительной обработки углеродной сажи марки Vulcan XC-72, нашедшей широкое распространение в качестве углеродного носителя катализаторов в различных электрохимических системах. При проведении испытаний в качестве пористой подложки использовалась пластинка из пористого титана диаметром 70 мм, толщиной 0,9 мм, с пористостью 28% и средними размерами пор ~ 10 мкм, изготовленная из порошкообразного титана. Для исключения рассыпания сажи подложка из пористого титана была снабжена дополнительным защитным бортиком. Толщина слоя углеродного носителя на пористой подложке составляла ~2 мм. Продувка кислородо-аммиачной газовой смеси через пористую подложку осуществлялась при равном соотношении NH3/O2. При этом для образования псевдокипящего слоя частиц углеродного носителя после вакуумирования рабочей камеры плавно увеличивали подачу кислородо-аммиачной смеси, а момент образования стабильного псевдокипящего слоя определяли визуально через смотровое окно вакуумной камеры. После образования стабильного псевдокипящего слоя зажигалась холодная плазма и производилась обработка рабочей поверхности частиц углеродного носителя холодной плазмой, полученной в аммиачно-кислородной газовой среде путем возбуждения радиочастотного тлеющего разряда (13.56 МГц) при низком давлении (0.250 мбар). Время обработки составляло 15 минут. Наличие и распределение полученных центров активации в виде привитых функциональных групп на поверхности частиц углеродного носителя электрохимического катализатора было проверено методом электронной микроскопии после дополнительного проведения химического осаждения частиц платины. Были проведены исследования пяти различных проб обработанного углеродного носителя. После проведения исследований пяти различных проб углеродного носителя не обнаружены частицы, отдельные участки поверхности которых отличались бы аномально низким содержанием центров активации (т.е. отсутствовали зоны с визуально отличавшейся плотностью распределения центров активации). Все исследованные образцы проб частиц углеродного носителя отличались высокой плотностью распределения центров активации. В общем случае плотность распределения центров активации зависит от плотности потока облучающих частиц, времени облучения, а также параметров кипящего слоя частиц углеродного носителя. Таким образом, предложенный способ плазмохимической обработки углеродного носителя электрохимического катализатора обеспечивает повышение эффективности активации поверхности мелкодисперсных и наноразмерных углеродных носителей электрохимических катализаторов путем повышения равномерности и обеспечения высокой плотности распределения центров химической активации по рабочей поверхности частиц носителя. Кроме того, по сравнению с прототипом упрощается процесс обработки за счет исключения необходимости механического перемешивания частиц углеродного носителя.