патент
№ RU 2681749
МПК F42B25/00

Способ управления планирующей авиабомбой при ветре

Авторы:
Кузнецов Николай Сергеевич
Номер заявки
2018118829
Дата подачи заявки
22.05.2018
Опубликовано
12.03.2019
Страна
RU
Как управлять
интеллектуальной собственностью
Чертежи 
2
Реферат

Изобретение относится к военной технике и может быть использовано для построения систем управления авиабомбами различного назначения. Способ основан на измерении скорости полета авиабомбы с помощью датчиков давления и температуры, установленных в носовой и боковых частях бомбы. По информации от этих датчиков, по заложенному алгоритму, выполняется управление полетом бомбы с помощью рулей с электрическим приводом. При достижении летательным аппаратом (ЛА) области досягаемости цели авиабомбой (АБ) с помощью бортовых систем измеряют взаимное положение координат ЛА и цели (дальность L и высота Н). С помощью бортовых датчиков в ЛА измеряют путевую скорость V и скорость ветра. Данную информацию (расстояние до цели L и скорость движения ЛА в направлении цели V, а также скорость ветра) непрерывно вводят в вычислители, входящие в состав прицельно-навигационного комплекса ЛА и АБ. На основании известных алгоритмов непрерывно вычисляют необходимое отклонение рулей АБ и сигналы, пропорциональные отклонению рулей, подают на приводы АБ. Положение рулей АБ контролируют с помощью датчиков обратных связей, соединенных с рулями АБ. Направление бомбометания выбирают с учетом скорости и направления ветра. В момент отцепки АБ от ЛА электропитание рулей от ЛА прекращается. После отрыва АБ от ЛА запускается источник электропитания на АБ и управление рулями осуществляется от него. После запуска источника тока на борту АБ запускается вычислитель АБ. С помощью датчика скорости, установленного в носой части бомбы, непрерывно определяют полное давление потока воздуха в направлении движения авиабомбы и вычисляют скорость движения авиабомбы v. Определяют статическое давление воздуха в зоне авиабомбы P. За каждый промежуток времени полета Δt с помощью соотношения v=Δh/Δt определяют вертикальную составляющую vскорости падения авиабомбы, где Δh- высота, на которую опустилась авиабомба за время Δt, которую, в свою очередь, определяют с помощью соотношения Δh=h-h=ln(P/P)RT/gM, где P- атмосферное давление на высоте h, P- атмосферное давление на высоте h(h>h), М - молярная масса воздуха, g - ускорение свободного падения, R- универсальная газовая постоянная, Т- средняя температура воздуха на высотах hи h. Определяют горизонтальную составляющую скорости полета авиабомбы с помощью соотношения v=(v-v). Вычисляют откорректированное значение скорости движения авиабомбы с помощью соотношения v=kv, где k=v/v(v- первое измеренное носовым датчиком скорости значение скорости авиабомбы после ее отцепления от летательного аппарата). С помощью как минимум двух датчиков потока газа, установленных в авиабомбу слева и справа от оси бомбы, определяют полные давления потоков воздуха Pи Pсоответственно с левой и с правой сторон бомбы. С помощью соотношений v=[2(P-P)/ρ]и v=[2(P-P)/ρ]определяют боковые перпендикулярные оси бомбы (левое - vи правое - v) скорости движения авиабомбы под действием ветра, выбирают из них максимальное значение и по нему определяют направление (правое или левое) смещения авиабомбы под действием ветра. С помощью соотношения α=arcsin(v/v) определяют угол αповорота горизонтальной скорости движения авиабомбы vпод действием ветра. С помощью соотношения v=vcosαопределяют фактическое значение горизонтальной составляющей скорости полета авиабомбы в направлении цели v. С помощью соотношения ΔS=vΔt вычисляют расстояние ΔS, пройденное авиабомбой до цели за промежуток времени Δt. Непрерывно с вычислителя авиабомбы на электроприводы рулей авиабомбы подают команды управления, обеспечивающие наклон и поворот авиабомбы, позволяющие выбирать скорости vи vтакими, чтобы падение авиабомбы в цель произошло на расстоянии, где n=H/Δh. 3 ил.

Формула изобретения

Способ управления планирующей авиабомбой при ветре, заключающийся в том, что авиабомбу закрепляют на летательном аппарате, так чтобы ее продольная ось совпадала с направлением полета летательного аппарата, подключают вычислитель летательного аппарата к вычислителю авиабомбы, направляют летательный аппарат в зону цели, с помощью вычислителя летательного аппарата непрерывно измеряют курсовую скорость летательного аппарата и высоту полета, фиксируют цель, определяют расстояние до цели, определяют скорость и направление ветра, направляют летательный аппарат на цель с учетом сноса авиабомбы ветром, вводят в вычислитель авиабомбы в качестве полетного задания расстояние до цели L, высоту полета H и курсовую скорость ν0, непрерывно вычисляют необходимое отклонение рулей авиабомбы и сигналы, пропорциональные отклонению рулей, подают на электроприводы авиабомбы, положение рулей авиабомбы контролируют с помощью датчиков обратных связей, соединенных с рулями авиабомбы, отсоединяют авиабомбу от летательного аппарата и включают электропитание авиабомбы, с помощью датчика давления, установленного в авиабомбе, непрерывно определяют статическое давление воздуха в зоне авиабомбы Pi, с помощью датчика температуры, установленного на наружной поверхности авиабомбы, измеряют температуру воздуха в зоне авиабомбы Ti, с помощью соотношения

где Pi - атмосферное давление на высоте hi,

Pi+1 - атмосферное давление на высоте hi+1 (hi>hi+1),

М - молярная масса воздуха,

g - ускорение свободного падения,

Rc - универсальная газовая постоянная,

Тс - средняя температура воздуха на высотах hi и hi+1,

определяют высоту Δhi, на которую опустилась авиабомба за время Δt, с помощью соотношения

определяют вертикальную составляющую νyi скорости падения авиабомбы, с помощью датчика скорости потока газа, установленного в носовой части авиабомбы, непрерывно определяют полное давление потока воздуха Рр в направлении движения авиабомбы и за каждый промежуток времени полета Δt вычисляют скорость движения авиабомбы νi с помощью соотношения

где ρ - плотность воздуха,

отличающийся тем, что вычисляют откорректированное значение скорости движения авиабомбы с помощью соотношения

где k=ν011 - первое измеренное носовым датчиком скорости значение скорости авиабомбы после ее отцепления от летательного аппарата),

с помощью соотношения

определяют горизонтальную составляющую скорости полета авиабомбы, с помощью как минимум двух датчиков потока газа, установленных в авиабомбу слева и справа от оси бомбы, определяют полные давления потоков воздуха Ррлi и Ррпi соответственно с левой и с правой сторон бомбы, с помощью соотношений

и

определяют боковые перпендикулярные оси бомбы (левое - ν и правое - νiп) скорости движения авиабомбы под действием ветра, выбирают из них максимальное значение и по нему определяют направление (правое или левое) смещения авиабомбы под действием ветра, с помощью соотношения

определяют угол αi поворота горизонтальной скорости движения авиабомбы νxi под действием ветра, с помощью соотношения

определяют фактическое значение горизонтальной составляющей скорости полета авиабомбы в направлении цели с помощью соотношения

вычисляют расстояние пройденное авиабомбой до цели за промежуток времени Δt, непрерывно с вычислителя авиабомбы на электроприводы рулей авиабомбы подают команды управления, обеспечивающие наклон и поворот авиабомбы, позволяющие выбирать скорости νyi и νxi такими, чтобы падение авиабомбы в цель произошло на расстоянии

Описание

[1]

Изобретение относится к военной технике и может быть использовано для построения систем управления авиабомбами различного назначения.

[2]

Известны различные способы управления траекторией полета авиабомб, основанные на управлении рулями авиабомбы по команде с вычислителя бомбы. Конструкции таких бомб являются сложными техническими устройствами.

[3]

Для результативного бомбометания планирующими авиабомбами необходимо применять сложные системы управления полетом этих бомб с применением радиоэлектронных устройств, подвергаемых воздействию средств радиоэлектронной борьбы (РЭБ).

[4]

Известен способ управления планирующей авиабомбой, основанный на измерении скорости полета авиабомбы с помощью датчиков давления и температуры, установленных в носовой части бомбы. По информации от этих датчиков, по заложенному алгоритму, выполняется управление полетом бомбы с помощью рулей с электрическим приводом. Такая система управления защищена от воздействия средств РЭБ. В основу этого способа управления положены известные закономерности о взаимосвязи давления газа со скоростью движения потока такого газа (Кузнецов Н.С. Предложения по модернизации системы управления авиабомбой // Научно-технический сборник ГНЦ РФ ФГУП «ЦНИИХМ им. Д.И. Менделеева» // Боеприпасы, 2018 г., №1).

[5]

Недостатком данного способа является то, что в нем отсутствует система коррекции траектории полета бомбы при действии на последнюю ветра, который относит бомбу в сторону. Коррекция осуществляется только в момент отцепления бомбы от летательного аппарата (ЛА) за счет упреждения, выполняемого летательным аппаратом.

[6]

Для обеспечения учета влияния на траекторию движения авиабомбы бокового и курсового ветра в предлагаемом техническом решении выполняется измерение скорости движения бомбы под действием бокового ветра, и производятся корректирующие расчеты. В основу предлагаемого способа управления положены известные закономерности о взаимосвязи давления газа со скоростью движения потока такого газа.

[7]

Описание технического решения поясняется рисунками, приведенными на фиг. 1, 2 и 3. Фиг. 1. Схема определения давлений в потоке газа: I - трубка для измерения давления P1, II - трубка для измерения давления Р2. Фиг. 2. Схема движения авиабомбы после отцепления от ЛА. Фиг. 3. Схема установки датчиков скорости на авиабомбе: 1 - сечение корпуса авиабомбы, 2 - датчик скорости в носовой части бомбы, 3 и 4 датчики скорости по бокам бомбы.

[8]

Согласно теореме Бернулли, при установившемся движении газа без учета трения, полное давление, равное сумме статического и динамического (скоростного) давлений, сохраняет свою величину вдоль траектории движения частицы газа. Эта закономерность используется на практике для измерения скорости потока газа. Принцип такого измерения поясняется схемой, приведенной на фиг. 1.

[9]

Математически величину полного давления Р2 потока воздуха, движущегося со скоростью V, можно выразить с помощью известного соотношения:

[10]

[11]

где P1 - статическое давление, ρ - плотность воздуха, V- скорость потока.

[12]

Преобразовав (1), получим выражение для скорости потока воздуха V.

[13]

[14]

В (2) плотность воздуха ρ величина переменная, и зависит от давления и температуры воздуха в зоне измерения. Как известно, ρ можно определить с помощью соотношения:

[15]

[16]

где R - газовая постоянная, равная для воздуха 286,7 Дж/(кг×°К); Т - температура по шкале Кельвина.

[17]

Приведенные выше соотношения показывают, что на практике представляется возможность определять скорость тела движущегося в воздухе на основании измерения давлений и температуры по схеме, показанной на фиг. 1. Предлагается такой способ использовать для определения скорости, падающей авиабомбы. Для этого в носовую часть и с боков авиабомбы необходимо установить комбинацию из трубок и датчиков. Обработав информацию от измерительных устройств по заданному алгоритму, в каждый момент времени определяется скорость движения бомбы, как вперед (по данным с носового датчика скорости), так и в бок (по данным с боковых датчиков скорости).

[18]

Сущность предлагаемого технического решения состоит в следующем. При достижении летательным аппаратом (ЛА) области досягаемости цели авиабомбой (АБ) с помощью бортовых систем ЛА измеряют взаимное положение координат ЛА и цели (дальность L и высота Н). С помощью бортовых датчиков в ЛА измеряют путевую скорость V и скорость ветра. Данную информацию (расстояние до цели L и скорость движения ЛА в направлении цели V, а также скорость ветра) непрерывно вводят в вычислители, входящие в состав прицельно-навигационного комплекса ЛА и АБ. На основании известных алгоритмов, непрерывно вычисляют необходимое отклонение рулей АБ и сигналы, пропорциональные отклонению рулей, подают на приводы АБ. Положение рулей АБ контролируют с помощью датчиков обратных связей, соединенных с рулями АБ. Направление бомбометания выбирают с учетом скорости и направления ветра. В момент отцепки АБ от ЛА электропитание рулей от ЛА прекращается. После отрыва АБ от ЛА запускается источник электропитания на АБ и управление рулями осуществляется от него.

[19]

Алгоритм управления АБ заключается в следующем. После запуска источника тока на борту АБ запускается вычислитель АБ. В этом вычислителе в качестве полетного задания зафиксированы (переданы от вычислителя ЛА) координаты цели относительно АБ в виде высоты полета Н и дальности L, а также начальная курсовая скорость полета АБ v0.

[20]

На фиг. 2 приведена схема движения АБ после ее отцепления от ЛА, на которой показаны эти исходные параметры, а также разложение скорости падения АБ на горизонтальную и вертикальную составляющие.

[21]

Дальность до цели по горизонту S определяется с помощью соотношения:

[22]

[23]

В вычислитель АБ непрерывно поступает информация от датчиков скорости, установленных в носовой и боковых частях АБ (см. фиг. 3), а также от датчика статического давления атмосферы в зоне АБ и датчика температуры в зоне АБ. Вычислитель непрерывно выдает команды на электроприводы рулей АБ, обеспечивая расчетное положение АБ по информации от датчиков скорости. Это расчетное положение определяется углом наклона оси АБ по отношению к горизонту и курсу. Именно углом наклона АБ изменяется сила сопротивления воздуха движению бомбы в направлении цели, так как при изменении угла наклона изменяется площадь сечения АБ в направлении движения.

[24]

Силу лобового сопротивления D, оказываемого движению бомбы в воздухе можно оценить с помощью известного соотношения:

[25]

[26]

где ρ - плотность воздуха, F - площадь поперечного сечения бомбы, V - скорость движения, а CD(M) - безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления.

[27]

Как видно из (5), сила лобового сопротивления пропорциональна площади поперечного сечения АБ F.

[28]

Для полета на максимальную дальность бомба должна лететь по курсу, обеспечивая минимальное сопротивление воздуха (минимальным сечением вперед), и падать, обеспечивая максимальное сопротивление (максимальным сечением вниз). Вычислитель АБ определяет горизонтальную и вертикальную vyi скорость движения АБ в каждый конкретный промежуток времени Δt и по этим значениям, с учетом введенных данных о цели, вырабатывает команды управления на электроприводы рулей АБ.

[29]

При горизонтальном движении АБ по курсу заданное расстояние до цели L (расстояние S по горизонту) АБ пройдет за время tm (время опускания АБ с высоты Н до цели).

[30]

Скорость движения АБ vi в каждый конкретный момент времени ti (см. фиг. 2) определяется расчетом с помощью соотношения (2) на основе информации от датчика скорости, установленного в носовой части АБ.

[31]

В качестве датчика скорости может быть использован датчик ССВ, разработанный Энгельским ОКБ «Сигнал» им. А.И. Глухарева.

[32]

При этом конкретное значение скорости движения авиабомбы определяют с помощью соотношения:

[33]

[34]

где ρ - плотность воздуха, Pi - статическое давление воздуха в зоне авиабомбы, Pp - полное давление потока воздуха в направлении движения авиабомбы в момент измерения. С целью учета влияния на эту скорость vi, составляющих ветрового воздействия, в значение скорости вводится поправка, коэффициент k. Коэффициент определяется из соотношения

[35]

[36]

где v1 - первое значение скорости авиабомбы, измеренное носовым датчиком скорости после отцепления АБ от ЛА.

[37]

С учетом (7), в расчетах используется откорректированное значение скорости, а именно:

[38]

[39]

Скорость падения АБ vy определяется на основе измерения изменения статического давления воздуха Р в зоне АБ за время Δt, в течение которого АБ опустилась на высоту Δh. Соотношение для определения вертикальной скорости vyi падения АБ (см. фиг. 2) в этом случае будет иметь вид:

[40]

[41]

Для определения Δhi воспользуемся зависимостью давления воздуха от высоты над уровнем моря, которая описывается так называемой барометрической формулой. Это соотношение после преобразования имеет вид:

[42]

[43]

где Pi - атмосферное давление на высоте hi, Pi+1 - атмосферное давление на высоте hi+1 (hi>hi+1), М - молярная масса воздуха, g - ускорение свободного падения, Rc - универсальная газовая постоянная, Тс - средняя температура воздуха на высотах hi и hi+1, (М=29 грамм/моль, Rc=8,31 Джоуль/моль*К, g=9,81 м/с2).

[44]

Горизонтальную скорость АБ vxi при отсутствии бокового ветра определяют с помощью соотношения:

[45]

[46]

С помощью датчиков потока газа, установленных в авиабомбу слева и справа от оси бомбы (см. поз. 3 и 4 на фиг. 3), определяют полные давления потоков воздуха и соответственно с левой и с правой сторон бомбы. Используя (2), с помощью соотношений:

[47]

[48]

определяют боковые перпендикулярные оси бомбы (левое - и правое - ) скорости движения авиабомбы под действием ветра, выбирают из них максимальное значение и по нему определяют направление (правое или левое) смещения авиабомбы под действием ветра.

[49]

За каждый промежуток времени Δt с помощью соотношения

[50]

[51]

определяют угол αi, поворота горизонтальной скорости движения авиабомбы vxi под действием ветра, а именно скорости бокового сноса .

[52]

С помощью соотношения

[53]

[54]

определяют фактическое значение горизонтальной составляющей скорости полета авиабомбы в направлении цели .

[55]

С помощью соотношения

[56]

[57]

вычисляют расстояние , пройденное авиабомбой до цели за промежуток времени Δt.

[58]

Вычислитель АБ в каждый момент времени определяет конкретные значения вертикальной vyi и горизонтальной составляющих скорости АБ vi, путем анализа данных с датчиков скорости, давления и температур в зоне АБ, а также значение текущей высоты нахождения АБ. Эти данные являются основой для осуществления коррекции траектории полета АБ по заданному алгоритму.

[59]

Непрерывно с вычислителя авиабомбы на электроприводы рулей авиабомбы подают команды управления, обеспечивающие наклон и поворот авиабомбы, позволяющие выбирать скорости vyi и vxi, такими, чтобы падение авиабомбы в цель произошло на расстоянии

[60]

[61]

где n=H/Δh.

[62]

Таким образом, приведенные материалы показывают, что предлагаемое техническое решение для осуществления коррекции полета траектории авиабомбы может быть реализовано с использованием известных средств. Предлагаемое техническое решение позволяет существенно упростить схему коррекции авиабомб по сравнению с применяемыми в настоящее время. И самое главное, управление такой бомбы полностью защищено от воздействия на нее средств РЭБ.

[63]

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Как компенсировать расходы
на инновационную разработку
Похожие патенты