для стартапов
и инвесторов
Изобретение относится к иконике для создания систем визуализации в инфракрасном, ультрафиолетовом, рентгеновском и других участках спектра электромагнитных излучений. Технический результат заявленного изобретения заключается в возможности представления в цвете изображений различных диапазонов спектра электромагнитного излучения. Для этого регистрируют число фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра, вычисляют средние значения числафотонов, энергиифотонов и дисперсии D(E) этой энергии. Полученные цифровые сигналы среднего числазарегистрированных фотонов, среднего значения их суммарной энергиии дисперсии энергии D(E) каждого пиксела изображения нормируют к их максимальным значениям в кадре и затем подают в устройство матрицирования для выполнения операции матрицирования и определения цифровых видеосигналов U, Uи Uцветного изображения, которые затем направляют на вход монитора. 2 з.п. ф-лы, 1 ил.
1. Способ визуализации в цвете изображений различных диапазонов спектра электромагнитного излучения, заключающийся в том, что регистрируют число фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра, вычисляют средние значения числа фотонов, энергии фотонов и дисперсии D(E) этой энергии, после чего цифровые сигналы среднего числа зарегистрированных фотонов, среднего значения их суммарной энергии и дисперсии энергии D(E) каждого пиксела изображения нормируют к их максимальным значениям в кадре и затем подают в устройство матрицирования для выполнения операции матрицирования и определения цифровых видеосигналов UR, UG и UB цветного изображения, которые затем направляют на вход монитора, при этом цифровые видеосигналы красного UR, зеленого UG и синего UB каналов монитора определяют из системы уравнений , где LR, LG и LB - относительные яркостные коэффициенты в колориметрической системе монитора RmGmBm, F̅max, E̅max, D(Emax) - максимальные средние значения сигналов невидимого изображения на выходе видеопроцессора, - средние энергии световых потоков фотонов красного, зеленого и синего каналов, - средние значения их квадратов, а и среднее значение энергии фотонов белого цвета и квадрат указанного среднего значения, соответственно. 2. Способ по п. 1, в котором средние энергии фотонов световых потоков красного зеленого и синего каналов и средние значения их квадратов рассчитывают по соотношениям , где - удельные координаты колориметрической системы монитора RmGmBm, причем интегрирование осуществляют по всему диапазону длин волн видимого участка спектра электромагнитного излучения. 3. Способ по п. 1, в котором среднее значение энергии фотонов белого цвета и среднее значение квадрата энергии фотонов белого цвета рассчитывают по формулам соответственно.
Техническое решение относится к иконике и может быть использовано при создании систем визуализации в инфракрасном, ультрафиолетовом, рентгеновском и других участках спектра электромагнитных излучений. Для получения изображения кроме видимого спектра используются все возможные виды электромагнитного излучения: инфракрасное, ультрафиолетовое, рентгеновское и другие диапазоны спектра. Большинство современных систем визуализации изображений являются черно-белыми; в них при детектировании информация о спектрах элементов (пикселов) невидимого изображения теряется. В ряде случаев черно-белые изображения раскрашиваются в псевдоцвета с целью использования свойств цветового зрения для улучшения дешифрирования, но это не может компенсировать потерю информации о параметрах спектров визуализируемых изображений, характеризующих их «цвет». В работе [Мазуров А.И., Раевская К.А. Квантовая модель низшей метрики цвета // Биомедицинская радиоэлектроника. - 2013. - №1. - с. 45-47] показано, что зрительная система человека классифицирует спектры света в метамерные группы, которые воспринимаются как один цвет по трем признакам: среднему числу эффективно поглощенных в сетчатке фотонов за время регистрации, среднему значению их суммарной энергии и ее дисперсии D(E) (в калориметрической системе FED(E)). Спектр в невидимых участках электромагнитного излучения также можно характеризовать этими параметрами. Таким образом, если определить число фотонов и суммарную энергию каждого пиксела визуализируемого изображения, а по ним вычислить среднее значение числа фотонов среднее значение энергии этих фотонов и дисперсию этой энергии D(E) и далее отобразить изоморфно эти параметры каждого пиксела в спектр видимой области, то зрительная система будет воспринимать каждый пиксел изображения в цвете так же, как она воспринимает цвет видимого спектра. Такую визуализацию в цвете невидимых изображений электромагнитного спектра можно реализовать в системах, в которых возможен счет фотонов, с определением энергии каждого фотона. Как правило, счет фотонов можно реализовать для электромагнитных излучений, у которых энергия фотонов ε=hν больше kT. Здесь ε - энергия фотона, h - постоянная Планка, ν - частота волны фотонов, k - постоянная Больцмана, Т - абсолютная температура. Среди способов визуализации известен способ параметрического кодирования [Блинов Н.Н., Мазуров А.И. Визуализация медицинских изображений в цвете // журнал «Медицинская техника» - 2013. - №5. - с. 1-3], основанный на регистрации числа фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра. Этот способ выбран нами за прототип. Для реализации способа используют систему визуализации изображений, в которой детектор работает в режиме счета фотонов. Детектор, включающий канал счета фотонов и энергетический канал, регистрирует число фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра. Посредством видеопроцессора вычисляют среднее значение числа фотонов среднее значение энергии и дисперсию этой энергии D(E). Далее в соответствии с системой уравнений: где Рассмотренный способ визуализации в цвете рентгеновских изображений имеет существенные недостатки: система уравнений (1) носит неоднозначный характер, так как не раскрыта физическая сущность постоянных коэффициентов Эти недостатки не обеспечивают возможность визуализации цвета рентгеновских изображений изоморфно цвету зрительной системы. Проблема, решаемая созданием заявляемого технического решения, заключается в возможности представления в цвете изображений различных диапазонов спектра электромагнитного излучения, что позволит разрабатывать системы визуализации цвета различных электромагнитных полей, в которых цвет изображения каждого пиксела на экране монитора сохраняет информацию о физических параметрах и D(E) спектра на выходе детектора. Для решения данной проблемы предлагается способ визуализации в цвете изображений различных диапазонов спектра электромагнитного излучения, заключающийся в том, что регистрируют число фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра, вычисляют средние значения числа фотонов, энергии фотонов и дисперсии D(E) этой энергии, далее цифровые сигналы среднего числа зарегистрированных фотонов, среднего значения их суммарной энергии и дисперсии энергии D(E) каждого пиксела изображения нормируют к их максимальным значениям в кадре и подают в устройство матрицирования для выполнения операции матрицирования и определения цифровых видеосигналов UR, UG и UB цветного изображения, которые затем направляют на вход монитора, при этом цифровые видеосигналы красного UR, зеленого UG и синего UB каналов монитора определяют из системы уравнений: где LR, LG и LB - относительные яркостные коэффициенты в колориметрической системе монитора RmGmBm, F̅max, E̅max, D(Emax) - максимальные средние значения сигналов невидимого изображения на выходе арифметического логического устройство (АЛУ) видеопроцессора, - средние энергии световых потоков фотонов красного, зеленого и синего каналов монитора, - средние значения их квадратов, а и - среднее значение энергии фотонов белого цвета монитора и квадрат указанного среднего значения, соответственно. Кроме того, средние значения энергии фотонов световых потоков красного зеленого и синего каналов и средние значения их квадратов рассчитывают по соотношениям: где , , - удельные координаты колориметрической системы монитора причем интегрирование осуществляют по всему диапазону длин волн видимого участка спектра электромагнитного излучения. Кроме того, среднее значение энергии фотонов белого цвета и среднее значение квадрата энергии фотонов белого цвета рассчитывают по формулам: Наилучшая форма выполнения предложенного технического решения далее описывается в качестве примера со ссылкой на фиг., где изображена функциональная схема визуализации в цвете изображений различных диапазонов спектра электромагнитного излучения. Для реализации способа используют детектор, который, как и в прототипе, работает в режиме счета фотонов. Спектральная информация аккумулируется таким детектором посредством одновременного счета фотонов и измерения их энергии. На вход детектора поступает изображение в невидимом диапазоне спектра электромагнитного излучения. Детектор, имеющий канал счета фотонов и энергетический канал, регистрирует число фотонов F с каждого пиксела изображения и их суммарную энергию Е за время кадра. Далее информация с каналов детектора поступает на вход аналого-цифрового преобразователя (АЦП) видеопроцессора, который преобразует видеосигнал в цифровую форму. Цифровой сигнал изображения с выхода АЦП направляется в блок цифровой памяти для сохранения кадра изображения. Для дальнейших преобразований в блоке цифровой памяти сохраняются две составляющие кадра: энергетическая (цветовая составляющая) и составляющая количества фотонов пикселя (яркостная составляющая). Покадровая выборка из блока цифровой памяти поступает в арифметико-логическое устройство (АЛУ), где вычисляются среднее значение числа эффективно поглощенных фотонов среднее значение суммарной энергии и третья составляющая - дисперсия D(E) этой энергии. На следующем этапе полученные средние значения нормируют к их максимальным значениям , и D(E)/D(Emax). Этап нормирования реализуется, например, посредством делителя, на выходе которого получают выходные сигналы, которые поступают на вход цифрового блока матрицирования для выполнения операции матрицирования и преобразования полученных значений в сигналы напряжения UR, UG и UB - Выходы блока матрицирования представляют собой цифровые видеовыходы и могут быть подключены непосредственно к монитору. Способ визуализации в цвете изображений различных диапазонов спектра электромагнитного излучения позволяет построить машинное цветовое зрение (зрение роботов) в любом диапазоне спектра электромагнитного излучения, подобное зрению человека, если энергия фотонов ε=hν > кТ. Способ позволяет также расширить диапазон видимости телевизионных систем за пределы видимого участка спектра, например, в ультрафиолетовую область спектра, если спектральную характеристику телевизионной камере, построенной по принципу счета фотонов, не ограничивать видимым диапазоном (0,38÷0,76 мкм), а сделать чувствительной в диапазоне, например, (0,19÷0,76 мкм), визуализировав вместе видимым светом ультрафиолетовое излучение. В отличии от вышеописанного способа все параметры в системе уравнений (2) имеют четкий физический смысл и могут быть легко определены.