патент
№ RU 2646076
МПК B01J19/30

НАСЫПНАЯ НАСАДКА ДЛЯ МАССООБМЕННЫХ КОЛОНН

Авторы:
Магомедбеков Эльдар Парпачевич Селиваненко Игорь Львович Селиваненко Олег Игоревич
Все (9)
Номер заявки
2016143438
Дата подачи заявки
07.11.2016
Опубликовано
01.03.2018
Страна
RU
Дата приоритета
24.04.2024
Номер приоритета
Страна приоритета
Как управлять
интеллектуальной собственностью
Иллюстрации 
2
Реферат

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в колонных аппаратах. Элементы насыпной насадки выполнены из металлической сетки в виде цилиндра с диаметром равным высоте с внутренней центральной перегородкой. Верхняя и нижняя кромки и перегородка цилиндра имеют равномерно расположенные зубцы и сетка имеет гофр. Технический результат: увеличение разделительной способности насадки, снижение коэффициента масштабного перехода при сохранении пропускной способности для различных колонн, жидкостей и режимов. 2 табл., 1 пр., 5 ил.

Формула изобретения

Насыпная насадка для массообменных колонн, элементы которой выполнены из металлической сетки в виде цилиндра диаметром d и высотой h, где d=h, с внутренней центральной перегородкой, отличающаяся тем, что верхняя и нижняя кромки цилиндра и перегородки имеют равномерно расположенные зубцы высотой X и углом в основании β, и сетка имеет гофр с высотой s, углом гофрирования γ и углом наклона гофра α, причем выполняются соотношения 0,1*h≤X≤0,3*h, 15°≤β≤75°, 0,1*d≤s≤0,3*d, 40°≤γ≤80°, 40°≤α≤80°.

Описание

Изобретение относится к области процессов и аппаратов химической технологии, а именно к насыпным насадкам для массообменных колонн, и может быть использовано в качестве контактного устройства в химико-технологических процессах ректификации, абсорбции, химического обмена и пр., осуществляемых в колонных аппаратах.

Насыпная насадка состоит из большого количества одинаковых элементов, которые засыпаются нерегулярным образом в колонну с целью создания развитой поверхности контакта между взаимодействующими потоками фаз и увеличения в результате этого эффективности тепломассообмена (Я.Д. Зельвенский, А.А. Титов, В.А. Шалыгин. Ректификация разбавленных растворов // Л.: Химия. - 1974. - 216 с.).

Известны различные типы насыпных насадок, элементы которых представляют собой тела различной формы. В насадочных массообменных колоннах жидкость тонкой пленкой покрывает элементы насадки и стекает по ним, а газ (пар) по свободным нерегулярным каналам поднимается вверх, обмениваясь с жидкостью разделяемыми компонентами. При этом гидравлические и массообменные характеристики насадки определяются формой и размером ее элементов.

Основными параметрами насадки являются пропускная способность Lуд.max (кг/м2ч), характеризующая максимальный удельный поток жидкости через слой насадки при соотношении массовых потоков жидкости и пара, равном 1, и высота эквивалентной теоретической ступени разделения ВЭТС (см), характеризующая разделительную способность насадки. Причем, чем ниже ВЭТС, тем эффективнее работает насадка. Еще одним удобным критерием сравнения разделительной способности насадок является N1m - количество теоретических ступеней разделения в 1 метре слоя насадки. Соответственно, чем больше N1m, тем эффективнее работает насадка. Поскольку Lуд.max зависит от рабочего давления процесса, а ВЭТС и N1m от удельных потоков жидкости и пара, то далее будем сравнивать эти параметры для различных насадок при одинаковом давлении P=1 ат, удельном потоке Lуд./Lуд.max=0,8 в режиме работы колонны с полным возвратом флегмы.

Наиболее близкой по технической сущности и достигаемому результату является насыпная насадка, элементы которой выполнены из проволочной сетки в виде цилиндра диаметром d и высотой h с внутренней центральной перегородкой, где d=h. Такая насадка была разработана доктором Джорджем Олафом Диксоном в 1946 году, называется по имени ее создателя - кольца Диксона, или Dixon Rings (DIXON - HIGH EFFICIENCY LABORATORY FRACTIONATION // J.S.C.I., 68, March, 1949), см. фиг. 1. Для изготовления элементов такой насадки используются полосы с ровными краями из сетки. Недостатками данного вида насадки является невысокая удельная поверхность колец Диксона, определяемая площадью поверхности сетки в единице объема, а также небольшое количество точек контакта элементов насадки между собой при их упаковке в колонну. Вследствие этого затруднено перераспределение стекающей жидкости и образование равномерной пленки на поверхности насадки. Эти негативные факторы приводят к невысокой разделительной способности и большому коэффициенту масштабного перехода, т.е. к значительному увеличению ВЭТС и снижению N1m при увеличении диаметра колонны.

Для экспериментального определения характеристик прототипа - насыпной насадки в виде колец Диксона нами были изготовлены элементы с d=h=15 мм из нержавеющей сетки с просветом 0,26 мм и толщиной проволоки 0,16 мм - Образец 1, см. фиг. 2. Для Образца 1 в процессе ректификации воды при P=1 ат нами была получена пропускная способность Lуд.max=18000 (кг/м2ч) и следующие значения ВЭТС и N1m при Lуд./Lуд.max=0,8=14400 кг/м2ч, в колоннах диаметром Dk=120, 200 и 300 мм, см. табл. 1:

Из данных табл. 1 видно, что при увеличении диаметра колонны в 2,5 раза, ВЭТС для колец Диксона увеличивается в 1,75 раза.

Техническим результатом изобретения является увеличение эффективности разделения, т.е. снижение ВЭТС и увеличение N1m при сохранении пропускной способности насадки Lуд.max, а также уменьшение коэффициента масштабного перехода, что позволит использовать кольца Диксона в колоннах большего диаметра без значительного ухудшения эффективности разделения.

Этот технический результат достигается тем, что насыпная насадка выполнена из металлической сетки с элементами в виде цилиндра диаметром d и высотой h с внутренней центральной перегородкой, где d=h, при этом, что верхняя и нижняя кромки цилиндра и перегородки имеют фиг. 3, и сетка имеет гофр с высотой гофра s, углом гофрирования γ и углом наклона гофра α, причем выполняются соотношения 0,1*h≤X≤0,3*h; 15°≤β≤75°; 0,1*d≤s≤0,3*d; 40°≤γ≤80°; 40°≤α≤80°, см. фиг. 4. Для изготовления таких элементов используется полоса из сетки с равномерно расположенными зубцами, выполненными, например, при помощи лазерной резки, далее пропущенная через вальцы гофрирующего устройства. Зубчатые края образуют многочисленные дополнительные капельницы, за счет чего перетекание жидкости с элемента на элемент становится более равномерным. Наличие гофра приводит к увеличению поверхности контакта. Эти факторы приводят к увеличению разделяющей способности насадки и к снижению коэффициента масштабного перехода.

Пример 1.

Насыпная насадка была выполнена из элементов из сетки с просветом 0,26 мм и толщиной проволоки 0,16 мм. Элементы имели следующие характеристики:

d=h=15 мм; X=3 мм (0,1*15≤3≤0,3*15); β=60° (15°≤60°≤75°);

s=2 мм (0,1*15≤2≤0,3*15); γ=60° (40°≤60°≤80°); α=70° (40°≤α≤80°) - Образец 2, см. фиг. 4.

Для Образца 2 в процессе ректификации воды при P=1 ат нами была получена пропускная способность Lуд.max=18000 (кг/м2ч) и следующие значения ВЭТС и N1m при Lуд./Lуд.max=0,8=14400 кг/м2ч, в колоннах диаметром Dk=120, 200 и 300 мм, см. табл. 2:

Из сравнения данных табл. 1 и 2 видно, что при одинаковой пропускной способности Образец 2 для всех диаметров колонн имеет больший показатель N1m по сравнению с прототипом. Кроме того, увеличение ВЭТС для Образца 2 с ростом диаметра колонны происходит не так резко, как для прототипа - при увеличении диаметра колонны в 2,5 раза, ВЭТС увеличивается в 1,2 раза. Таким образом, технический результат достигнут.

Как компенсировать расходы
на инновационную разработку
Похожие патенты